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Abstract. Generalization is a major problem in reinforcement learning
(RL), as agents struggle in environments outside their training sets. Of-
ten caused by overfitting during the training phase, this issue limits the
application of RL in the real world. This paper tries to solve the general-
ization problem by using a domain randomization technique during the
training period. Using two real-world problems; the financial market and
agriculture (crop production), this paper trains classical deep reinforce-
ment learning algorithms (DQN and PPO) in different and randomized
environments (MDPs). Agents trained in randomized environments gen-
eralize better than those trained in single environments (baseline agents).
This conclusion is based on the results, in which the agents trained in
the randomized environments achieve higher cumulative rewards.

Keywords: Deep Reinforcement Learning - Markov Decision Process -
Deep Q Network - Policy Optimization.

1 Introduction

Deep Reinforcement Learning (DRL) is today one of the most prominent sub-
domains of artificial intelligence. One of its most exciting possibilities is the use
of its algorithms to solve complex, real world issues such as resource alloca-
tions problems in finance, agriculture and computing [1]. This DRL potential
comes from performance of reinforcement learning (RL) methods which can be
improved using function approximators such as neural networks [2]. Neural net-
works are often preferred for this role because of the straight forward way of
adjusting a gradient [3]. This improvement is much needed in the RL domain
because of its persistent critique of limited adaptability in the real world [4].
While RL has shown remarkable success in solving complex problems like games,
it fails to achieve competitive results in most worldly problems. RL depends on
unbiased interactions with environments and countless trial and error attempts,
requirements that are often not achieved [5]. Also, unlike games which are based
on controlled environments, the real world has unique challenges that are usually
open-ended [6] and non-stationary [7]. These attributes make it harder to get
good results with conventional RL methods.
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By combining RL with Deep Learning, DRL provides a starting point for
solving many real world problems. First, by providing a means to engage vast
amounts of environments and secondly, by facilitating efficient and countless
interactions with the said environments [8]. As such, today, it is possible to train
DRL policies that operate in a variety of state and actions spaces as defined by
Markov Decision Processes (MDPs) [9]. While most of the learned policies are
restricted to the training environments (poor generalization), this ability to work
in different MDPs is an important building block for reasonable generalization.

However, as it stands, most RL/DRL solutions are specific to the training
environments. This limitation is well documented within the DRL field. For
instance, there has been countless studies that have shown this generalization
problem using adversarial perturbations in state observations of policies and
neural networks [10]. Other scholars like [11] have reviewed adversarial pertur-
bations in the DRL domain, while simple review studies like those done by [12]
have analyzed adversarial attacks in deep policies. Majorly, most of these studies
have focused on this issue by exploring the fundamental problems of function
approximations, action value functions and estimation biases of states [13] while
still dealing with new architectural designs [14]. This brief overview of the gen-
eralization problem highlights two critical issues found in DRL policies; one, the
typical use of deep neural networks as function approximators, which inherits
their intrinsic issues [15]. Two, the inability to completely explore entire MDPs
in high-dimensional problems.

These critical drawbacks are then worsened by the problem of over fitting.
Most DRL policies suffer from overfitting because they are only trained on single
environments. Without solutions to any of these fundamental issues, the general-
ization problem will always exists as highlighted by [16] who thought RL policies
specialization in training sets is their major fault when deployed in different envi-
ronments. As a possible solution, this paper tries to improve DRL generalization
by exposing algorithms to different MDPs during the training process. The two
DRL algorithms used during the experiments were randomly exposed to differ-
ent MDPs at each training episodes with their results analyzed in this paper.
Two test environments were used, the financial markets (profits and losses) and
agriculture (application of fertilize and impact on winter wheat production).

The process of conducting the suggested experiments led to two contributions
from this paper:

1. Development of a financial trading environment (including; action space,
state space, and reward function) that exposes any reinforcement learning al-
gorithms to different MDPs during training. The frequency of MDP changes
in every episode can be defined by the user, including the restrictions of
repeat and reshuffle.

2. Experiments on two real world problems where baseline and domain ran-
domization tests were done.
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2 Background

To properly define the approaches used in this paper to achieve generalization, it
is important to outline the basic components of RL and DRL. In particular, the
algorithms and how they interact with an environment. An RL and DRL algo-
rithm A learns a policy by interacting with a Markov Decision Process (MDP)
[15]. MDPs are a vital aspect of RL as they provide a framework for solving
decision-making problems that have random or controlled decision makers [17].
These decision makers tend to make sequential decisions that MDPs help to
define by evaluating actions taken during current states and environments|[18§].
In this paper, MDPs from different but related contexts are used to improve
performance by randomly using them in the training episodes.

In a standard RL formulation an agent sequentially engages an environment.
This process is modeled as a tuple problem (formal definition of an MDP) having
a state (S), action (A), transition function (P), reward (R) and discounting factor
(7). This interaction typically starts when the agent begins from a state sy which
is part of a possible start states (Sy) by taking an action a € A, at given time step
t € N [19]. What follow is a transition function (") which defines the probability
of moving to state s’ having taken action a from state s [20]. Thereafter, a
reward function R outlines the agent’s reward following a transition. Ultimately,
the agent’s objective is to maximize the accumulated reward, discounted by a
factor 7.

A policy 7 that facilitates the agent’s movement is important to mention.
Policy 7w helps to map states into actions (m: S — A), a process that fully
highlights the behavior of the agent. In the end, the typical objective of an RL
problem is to maximize the expected cumulative reward R (equation 1).

T-1
R=E lz ’ytr(st,at)] (1)

t=0

Where:

R is expected return,

— 7 is the discount factor,

r(s¢,ar) is reward a time t when being in state s; by taking action a; ,
T is the total time-steps.

— All this sum run over time-steps t=0 to T-1

2.1 Related Works on Generalization

Generalization has been a long-standing issue in RL that has led to different
specifications and solutions. Often, most measures have focused on the learning
process in an attempt to capture the abilities of agents operating in different
environments and making efficient use of samples [21], including those in policy-
based methods [22]. Such measures have dominated learning theories in sample
complexities as experiments try to capture efficiency in the learning processes
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[23], more so when samples have information on environment dynamics [24].
Other notable works have attempted to apply supervised learning dynamics by
having train and test paradigms in training trajectories or state spaces [25].
Overfitting has also been studied in a similar manner, where RL agents have
been found to overfit to their training environments [26]. Such studies have pro-
vided benchmarks for testing RL in the real world [27]. When formularized,
these benchmarks have showed the importance of having a wide range of testing
environments to limit overfitting. In all, generalization in most of these works
has been captured as a means to avoid over-fitting in particular training envi-
ronment [28]. This broad definition has implied a need to sample from diverse
environments as a starting point for generalization.

However, this sampling requirement can vary based on the definition of gener-
alization. For instance, when generalization is defined as improved performance
in off-policy states [29], this diverse sampling is not necessary as it pushes RL
into the standard methods of supervised learning. Similarly, generalization tech-
niques such as adding stochasticity in policies, having random steps, and adding
human play steps push RL agents into off-policy states which diversify the train-
ing data without any sampling requirement [30].

2.2 Methods of Generalization

Generalization in DRL and RL in general is led by two approaches; modification
to the training algorithm and modification of the MDP.

Modifying the Training Algorithm Also referred to as algorithmic general-
ization, this approach has methods that modify the training algorithm through
techniques that use optimizers, regularizer, and updates to the rules of the policy
[15].

A holistic definition of these methods considers a training algorithm A which
gets an MDP as input and produces a policy w. Given a typical MDP definition
(tuple, with 5 elements), an algorithmic generalization method G4 is produced
by a function F' : A — A that runs the training algorithm F'(A) in the said
MDP.

Modifying the MDP - Domain Randomization The other major cate-
gory of generalization tries to change the MDP directly by either modifying
the learning environment or the training data [31]. This transformation affects
the interaction between the training algorithm and the learning environment by
having an overall objective of increasing the samples engaged.

This approach is also called domain randomization as it involves varying the
parameters of the environment during training to increase the robustness of the
learned policy [15]. Domain randomization is implemented during training where
the selected environment parameters are adjusted randomly during the episodes
[2]. The changes done alter the state transition dynamics, reward processes and
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in some instances the agent’s interaction with the environment [32]. Domain
randomization modifications can be summarized as:

1.

Randomizing the state space - where the state space is changed to reflect
environmental conditions as highlighted by equation 2.

S ={s|s €Sy with random perturbations from P} (2)

With Sy being the base state space and P representing random perturbations
of an environmental variable.

Randomizing the action space - here the action space is modified by changes
in environmental dynamics as formulated by equation 3.

A ={a|a€ Ay with random variation from P} (3)

Where Ay is the original action space and P is the noise in the environment.
Randomization of transition probability - the state transition model is varied
to simulate uncertainty in the real world (equation 4).

P(s'| s,a) = Py(s' | s,a) x N(u, o) (4)

With Py(S’|s,a) representing the original transition model and N(u, o) is
the added noise to simulate environmental dynamics.

Randomization of the reward function - finally, the reward function can be
randomized as influenced by environmental changes (equation 5).

R(S’ a) = RO(S7 a’) + Rrand(sa a) (5)
Ry (s,a) being the base reward and R,4n4(s,a) is the randomness element.

Therefore, a possible path for generalization through domain randomization

can be achieved using the following basic steps:

3

Start randomization

Training on different (varied) environments

Variations are introduced to the environments (i.e. changes to state space,
action space, transition and reward)

Policy learning stage where the agent is exposed to diverse training scenarios
Transfer the learning to an unknown environment

Methodology

3.1 Motivating Examples

Robust performances for either offline and online RL techniques will begin to
emerge when algorithms gain some level of generalization. This demand for en-
hanced capabilities motivated the use of the two real world problems; the finan-
cial market and agriculture. Both of these issues have ever changing conditions
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that limits the application of other machine learning techniques. For instance,
while a financial instrument like Gold or Euro/U.S. Dollar may have an evident
trading pattern, unlimited factors can drastically shift its price action [33]. Simi-
larly, in agriculture, the yields from a particular crop can drastically change from
one season to another. Developing a model that adapts to immediate conditions
is thus necessary as defined by the existing environmental parameters.

This requirement defines a Markov Property where the future state only
depends on the present state. Also defined as memorylessness, this property is
considered in the motivating examples where formally, if S; represents a state of
a process at time ¢, the Markov property is given by

P(Xir1 | Xoo Xi1,- 0, Xo) = P(Xe41 | X0) (6)

Which means that the conditional probability of moving to a new state X, 41
depends solely on the present state X;. While, this assertion is true, it borrows
from the understanding that the past and future are conditionally independent,
given the present[34]. This because a State as defined in an MDP determines
what happens next and is understood to be a function of the history [35]. With
history being a sequence of observations, actions and rewards (equation 7).

Hy=01,R1,A1,..A¢—1,0¢, Ry (7)

Formally, therefore;
State(St) = f(Hy) (8)

Defining The Environments For the financial market, Gymnasium (formerly
Gym) environments were designed using six financial instruments (Euro/U.S.
Dollar(EURUSD), British pound/U.S. dollar (GBPUSD), U.S. dollar/Chinese
Yuan (USDCNY), U.S. Dollar/Japanese Yen (USDJPY), Silver (XAGUSD) and
Gold (XAUUSD)). This environment was named BeshaGym and the dataset for
all the 6 instruments was from 2004 to 2024.

BeshaGym unlike existing trading environments provides a means to ran-
domize MDPs during training, which is a significant contribution of this paper.
Moreover, the randomization can be changed based a user’s needs.

For the second environment, CropGym was used. CropGym is a reinforce-
ment learning platform developed by the Wageningen University in Netherlands
for optimizing DRL agents for the application of nitrogen fertilizer in crops [36].

The objective of the BeshaGym was to create an environment where a DRL
agent trades the financial market to maximize profit. The agent would have
access to a window size of 50 past time steps (i.e. the agent observed the last 50
time steps at every trading period) to base its decisions. The reward (R;) from
the BeshaGym environment was based on the ability to take profitable trades
be it either through buys (long) or sells (shorts). A starting trading balance of
10,000 (representing $10000) was also initialized in the environment.

CropGym on the other hand, as defined by [36] is a highly configurable RL
environment built on the Python Crop Simulation Environment (PCSE) to help
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—(spotprice — lastprice) x 10000 if, Short & action = Sell
R: = ¢ +(spotprice — lastprice) x 10000 if, Long & action = Buy

0 otherwise

develop RL agents for implementing crop growth simulation models. In this
paper, the experiments done were on the application of nitrogen fertilizer on
Winter Wheat [36]. DRL agents were to apply a discrete amount of nitrogen
fertilizer to balance crop yield and environmental impact. The reward (R;) of
this environment borrows from the LINTUL-3 model which is a subset of PCSE
general model where growth parameters like TNSOIL (amount of nitrogen in
the soil), LAI (leaf area index), NUPPT (uptake of nitrogen in soil) and WSO
(weight of storage organ - the grain) are simulated. The DRL agent thus tries
to maximize the difference in WSO for policy using nitrogen fertilizer and those
that do not use the fertilizer (zero nitrogen policy). There is also an added cost
B that mimics the price of nitrogen fertilizer (equation 9).

R = (WSOF — WSOJ ;) — (WSO) — WSO ) ~ AN, (9)

DRL Agents For the DRL agent, they were based on Deep Q Network (DQN)
(Figure 1) [37] and Proximal Policy Optimization (PPO) (Figure 2) [38] algo-
rithms. These algorithms were sourced from the Stable-Baselines3 (SB3) library
which provides simple and effective implementations. For DQN, SB3 builds on
top of the fitted Q-iteration (FQI) which helps stablize learning with neural
networks. Conversely, PPO combines ideas from A2C [38] and TRPO [21] by
minimizing updates for new policy from old policy.

Reward (rt) D h
Agent :

Deep Neural Network
Qfs, a)

Optimal Action

(a)

States

Environment

v
Optimal
policy
v

Input . Output
layer Hidden layers layers

St+1

Observe State (s

Fig. 1: High-Level Diagram of Deep Q Network [39]
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Experience :
Trajectory |« Environment Update Q(s,a)

(Energy and FCAS Markets) "

Policy Gradient

Update w(a|s)

Fig. 2: High-Level Diagram of Proximal Policy Optimization [40]

3.2 Definitions

To improve generalization, the experiments conducted were formally setup with
a domain randomization approach. A randomization strategy was used while
training the agents in different MDPs across the training episodes. These MDPs
were generated by creating diverse Gymnasium environments using different
CSV datasets which encoded different training scenarios. As such, each episode
involved training an agent on an environment from a different dataset which
effectively varied the environment’s dynamics, promoting generalization by sim-
ulating real world situations.

Key Items Markov Decision Process (MDP): An MDP as outlined earlier
was defined by 5 elements; S set of states, A set of actions, P state transition
probability, R(s,a) reward function and 7" a discounting factor.

Environment Distribution &: Distribution over environments where every
environment M; = (S;, A;, P;, R;, T) was drawn from the distribution &. In this
case, the environments were drawn from the CSV data, having different state
transition dynamics and rewards designs.

Policy mp: Agent’s policy which was parametrized by 6. It defined the action
selection strategy when given a state s.

Training Episodes: At each training episode ¢, an environment M, was
sampled from the environment distribution £&. Thus, an agent was interacting
with environment M; during a given episode t.

Objective: The overall goal for the agent was to maximize expected cumu-
lative reward across the training episodes.

Mathematical Formulation Training Process: Across all the training
episodes T', an agent interacted with environments M as sampled from &

M ~&i=1,2,...,T (10)
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MDP Dynamics: Agent interacts with each environment M; during episodes
t followed the standard RL setup

St ~ Si,(lt = 7T0(St,7"t = Ri(st,at),stH ~ Pi(st+1|st,at) (11)

Expected Return: Agent’s objective was to maximize the expected
cumulative reward which represents the expected return J(0) over multiple
environments.

J(Q) = E]\/jiNE lz ’ytrt] (12)
t=0

4 Experiments

All the algorithms were developed using PyTorch because of its flexibility and
seamless integration with CUDA (easy acceleration with GPU). The baseline
agents were also implemented using Stable Baseline3 library. Most of the
training and comparison of agents was done on a personal computer with the
following specifications: 11th generation Intel core i7-11850H x 16 processor
and a NVIDIA T600 GPU with 32 gigabyte of RAM and 1 terabyte of storage
space.

The key hyperparameters for the algorithms used are highlighted in table 1.

4.1 Running Experiments

In the two test environments, BeshaGym (the financial market) and CropGym
(nitrogen application on winter wheat), two general experiments were conducted;
Baseline Experiment and Domain Randomization Experiment.

Baseline Ezxperiment: In this first experiment, the DQN and PPO algo-
rithms were trained on the environments without any domain randomization.
This classical deployment was done to establish a baseline to test the effective-
ness of domain randomization.

For BeshaGym, only one environment was used and it was sourced from
the XAUUSD dataset. This meant, the algorithms were exposed to the same
environment across all the training episodes. Conversely, for CropGym, a single
region was defined in the training location. CropGym connects to environmental
and geographical data providers like the NASA Power project which makes it
easier to source the necessary training data [41]. Therefore, like BeshaGym, the
training environment was consistent across all the training episode for the first
set of experiments.

Domain Randomization Experiment: Thereafter, the second experiment
revolved around domain randomization as highlighted in section 3 above. For Be-
shaGym, the implementation of domain randomization was practically done by
randomizing the selection of CSV datasets (i.e. EURUSD, GBPUSD, USDCNY,
USDJPY, XAGUSD and XAUUSD). To ensure agents had access to all CSV
files, and hence the resultant environments, the randomization had a no-repeat
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Table 1: Default Hyperparameters for DQN and PPO

Hyperparameter BeshaGym CropGym
DQN PPO DQN PPO
learning _rate le-2 le-2 le-4 2.5e-4
buffer size 200000 - - -
batch _size 64 64 64 256
gamma 0.995 0.995 0.99 0.999
exploration fraction 0.2 = 0.1 -
exploration initial eps 1.0 = 1.0 -
exploration final eps 0.06 — 0.01 -
target update interval 2000 = - -
train_freq ) = - -
learning _starts 2000 = - -
max_grad_norm 20 20 10 0.7
n_steps = = - 512
ent_ coef = = - 0.01
clip_range = = - 0.1
n_epochs = = - 4
gae lambda = = - 0.99
vf coef = = - 0.5
net_ arch = = [256, 256] pi/vi:[256,256]

restriction and reshuffle. That is, agents had access to unique CSV files for every
6 episodes and all files were reshuffled thereafter.

On the other hand, CropGym provides a rudimentary means to randomize
the training location where an algorithm can be trained in different locations
as encoded using source files or data from providers like the NASA POWER
Project. The latter method was used where five (5) different locations were used
to train the algorithms by providing their longitude and latitude to the Nasa
Power parameter [41]. The five locations were Ol’Kalou, Shamata, Ishiara, Meru
and Nanyuki (all major agricultural areas in Kenya). Similarly, the agents were
exposed to unique locations for every 5 episodes with a shuffle done thereafter.

4.2 Evaluation

To evaluate the two sets of experiments, agents were tested in two environments.
The first environment was found in the training set and the second was not i.e.
a random environment. For BeshaGym, this saw evaluations done on environ-
ments sourced from XAUUSD and XAGUSD (found in the training set on both
experiments) and EURGBP (not on the training set). CropGym on the other
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hand saw evaluation of the agents on environments sourced from the Ol’kalou
region (found in the training set) and Mwea region (not in the training set).

The evaluation was primarily done using the reward obtained from the envi-
ronments. In BeshaGym, this reward influenced the Profit/Loss outcomes and in
CropGym, it affected the crop growth. Moreover, TensorBoard logs were used,
giving further evaluation results through training/validation loss, policy gradi-
ent loss, and value loss.

4.3 Results and Discussion

BeshaGym The results as depicted in both figure 3 and Table 2 below shows
DQN outperformed PPO, both in baseline and domain randomization experi-
ments.

Domain randomization results were far better than those of the baseline re-
sults on most of the runs. In particular for DQN, the agents exposed to random-
ized environments had higher cumulative reward as compared to the baseline
agents.

From the evaluation results highlighted in Table 2, domain randomization
(DR) typically led to better reward, hence better Profit/Loss (P/L). It is however
important to emphasize that PPO performed poorly across the board in the
BeshaGym environment. Additionally, it is important to note that the agents got
higher reward during evaluation for environments that were part of the training
set. For environments not in the training set, agents in the domain randomization
experiments had higher reward as compared to the baseline agents.

Smoothed Cumulative Reward vs. Steps

—— DON - Baseline (Gold)
DQN - DR (Gold)
—— DON - Baseline (EURGBP)
—— DQN - DR (EURGBP)
—— PPO - Baseline (Gold)
—— PPO - DR (Gold)
PPO - Baseline (EURGBP)
—— PPO - DR (EURGBP)

200000

150000

100000

Smoothed Cumulative Reward

50000

25 5.0 75 10.0 125 15.0 175
Episode (Step)

Fig. 3: BeshaGym Cumulative Reward
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Table 2: BeshaGym Evaluations

Cumulative Reward

Evaluation Episodes Epl Ep2 Ep3 Ep4 Ep5
DQN

Baseline (Gold) 41998.0 2769.9 9162.5 9162.5 701.0

DR (Gold) 18310.0 101000.0 218000.0 345000.3 16450.0

Baseline (EURGBP) 1548 .0 -711.8 -4988.9  -2976.9 -2979.0

DR (EURGBP) 2982.0 2982.0 2982.0 2982.0 2982.0
PPO

Baseline (Gold) 1254.9  4873.1 4999.1 540.8 529.8

DR (Gold) -4.9 -4.9 8.9 0 0

Baseline (EURGBP) 0 0 0 0 0

DR (EURGBP) -96.6 -91.6 -91.6 -62.5 -60.5

These results were further emphasized by the tensorboard logs, where for
DQN the training loss decreased more smoothly in the domain randomization
experiments (Figure 4a). For the agents in the baseline experiments, their train-
ing loss had random spikes across various training iterations, although, it was
able to decrease towards the end. In comparison, the agents in domain random-
ization experiments saw a smooth decline in the training loss, across various
training iterations. For PPO, both baseline and domain randomization agents
saw the training loss decrease smoothly across the training period, however,
both failed to get reasonable changes on the policy gradient loss (Figure 4b)
(even with hyper-parameter tuning) which could explain the poor performance
of PPO in the financial market environment.

Smoothed Training Loss Over Time sore Policy Gradient Loss Over Time

2 s 4 5 o
Steps (in thousands] 161 Steps fin thousands)

(a) Training Loss: Baseline Vs Domain (b) Policy Gradient Loss: Baseline Vs
Randomization Domain Randomization

Fig. 4: Training metrics
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CropGym The training reward for agents in the domain randomization ex-
periments was higher than that of the agents in baseline experiments as shown
in Figure 5. Generally, the cumulative reward for the agents in the randomized
environments was higher than that of the baseline experiments. This outcome
meant that the trained policy for both DQN and PPO performed better in bal-
ancing the application of fertilizer to meet the needs of crop yield (good WSO)
while minimizing any environment effects. From Figure 4, the cumulative reward
of baseline PPO was lower than all other experiments. Baseline DQN had a bet-
ter performance, including competing with the best agent (domain randomized
DQN) in some steps. However, its cumulative reward fell towards the end which
highlights the importance of exposing agents to different environments.

Cumulative Reward Over Time

-20

Reward

-40

—60 —— Base DQN
Base PPO

—— MDPs DQN

—— MDPs PPO

0 50000 100000 150000 200000 250000 300000 350000 400000
Steps (in thousands)

Fig.5: CropGym Cumulative Reward: Baseline Vs Domain Randomization

On top of the cumulative reward, a subtle difference in WSO results was also
observed. The WSO (weight of the storage grain/organ) saw a bigger growth for
the agents in the domain randomization experiments. This is observed in Table
3 where the agents exposed to different environments had bigger WSO values.

These results were also confirmed by the tensorboard logs where in both
algorithms, the training reward and loss had better outcomes for the randomized
experiments (Figure 6). Higher training rewards were observed in the second
set of experiments, as compared to the baseline experiments. The training loss
also decreased in a smoother fashion with minimal spikes, showcasing a better
training process for the second set of experiments.
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Step Base DQN Base PPO MDPs DQN MDPs PPO

20500 38.90 36.62 6.21 6.11

62500 44.91 56.49 79.47 62.57
104500 29.60 65.58 80.39 33.25
146500 35.17 44.92 50.38 53.5
188500 25.15 28.69 34.33 43.94
230500 29.77 28.22 40.68 43.75
272500 36.21 28.22 39.89 43.57
314500 21.44 20.60 54.17 64.22
356500 27.76 33.22 35.69 56.35
398500 23.36 29.39 31.94 38.71

Table 3: WSO for Baseline and Domain Randomization

Smoothed Training Loss Over Time Smoothed Policy Gradient Loss Over Time

nnnnnnnnnnnnnnnnn

aaaaaa

Y
Steps (in thousands]

(a) Training Loss: Baseline Vs Domain (b) Policy Gradient Loss: Baseline Vs
Randomization Domain Randomization

Fig. 6: Training metrics

5 Conclusion

In this paper, an attempt was made to improve the generalization of deep re-
inforcement learning algorithms. Using domain randomization, DQN and PPO
agents were deployed in two real world scenarios where the objectives were to
increase profits and crop yields. These agents had improved performance when
trained on different and randomized environments as compared to when they
were trained on single (specific) environments.

Future works can try to address the performance problem of PPO in the fi-
nancial market environment by either adjusting the environment parameters or
the training specifications. To further test the effectiveness of domain random-
ization, different randomization techniques can be compared. Moreover, domain
randomization can be compared with other techniques of generalizing DRL algo-
rithms. For instance, modifying the training algorithms through regularization
techniques, reward shaping and redefining replay buffer among many other meth-
ods. Additionally, combining these classical DRL algorithms with Transformers
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and Recurrent Neural Network can be done with the same objective of trying to
improve generalization.
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