
Vol.:(0123456789)

SN Computer Science (2024) 5:403
https://doi.org/10.1007/s42979-024-02659-x

SN Computer Science

ORIGINAL RESEARCH

Self‑Playing RNA Inverse Folding

Stephen Obonyo1 · Nicolas Jouandeau1 · Dickson Owuor2

Received: 5 April 2023 / Accepted: 26 January 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024

Abstract
Ribonucleic acid (RNA) sequence controls many biological functions in the body of living organisms including protein
synthesis and gene regulations. The sequence folds according to the low Minimum Free Energy (MFE) which enables it
to achieve various roles. Given a target RNA structure, an RNA sequence can be designed to fold accordingly in a process
called RNA Inverse Folding. In this paper, we present an RNA Inverse Folding model that performs a single-step look-ahead
to select optimal RNA base and base pairs to design RNA sequences. Our proposed model (SPRNA) learns to accurately
design RNA sequences based on self-improving policy function. The model recorded state-of-the-art results on two test
datasets and very competitive results on others.

Keywords RNA sequence design · RNA Inverse Folding · Reinforcement learning · Self-play · Machine learning · Deep
learning · Self-improving algorithms

Introduction

An RNA molecule is fundamental in the body of living
organisms. It controls key life-controlling biological pro-
cesses such as the synthesis of proteins [3]. In the the central
dogma of molecular biology [19], the RNA is the interme-
diate between the deoxyribonucleic Acid (DNA) and pro-
teins. First, the DNA is transcribed to RNA which is then (ii)
translated to proteins. Proteins are the fundamental building
blocks of cells and tissues in the body of living organisms
[19]. Proteins are also pivotal in catalyzing many biochemi-
cal processes in the body of living organisms enabling bio-
logical processes such as cell generation and metabolism

[81]. Besides protein synthesis, RNA also plays a key role
in the regulation and expression of genes that dictate the
phenotypic and genotypic characteristics of living organ-
isms [3].

RNA sequence is composed of four key Nitrogenous
bases: (i) Adenine, (ii) Guanine (G), (iii) Cytosine and (iv)
Uracil (U). A study by Schaffner [67] showed that there is
a pairing between bases A and U, and G and C. These are
often referred to as the Watson-Crick pairs. Some RNA also
exhibits base pairing between A and G. In this paper, we will
refer to AU, UA, GC, CG, GU and UG as base pairs and A,
G, C and U as bases. The general base and base pair distribu-
tions are A:93%, G:5% C:1% and U:1% and GC/CG:60%,
AU/UA:33% and GU/UG:7% respectively. The base pair
distribution can vary in complicated RNA sequences e.g in
left-most junctions can have GC/CG:82%, AU/UA:11%: and
GU/UG:7% [57].

In Fig. 1, A is the target structure of the RNA sequence
while B is a sample RNA sequence that conforms to the
given target structure. RNA target structure defines the base
and base pair positions in the RNA sequence. Given a target
RNA structure, a sequence of bases and base pairs can be
designed that fold to match it. This process is often referred
to as RNA sequence design or RNA Inverse Folding. RNA
sequence that does not fold according to the target structure
can be dysfunctional and inactive [87].

This article is part of the topical collection “Advances on
Computational Intelligence 2022” guest edited by Joaquim Filipe,
Kevin Warwick, Janusz Kacprzyk, Thomas Bäck, Bas van Stein,
Christian Wagner, Jonathan Garibaldi, H. K. Lam, Marie Cottrell
and Faiyaz Docto.

 * Stephen Obonyo
 sobonyo@up8.edu

 Nicolas Jouandeau
 n@up8.edu

 Dickson Owuor
 dowuor@strathmore.edu

1 LIASD, University of Paris 8, Saint-Denis, France
2 SCES, Strathmore University, Nairobi, Kenya

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02659-x&domain=pdf
http://orcid.org/0000-0002-6878-7802

 SN Computer Science (2024) 5:403 403 Page 2 of 17

SN Computer Science

Before going deeper into the RNA Inverse Folding
problem, we present some key concepts related to the
problem.

 (i) Base A base is a single nucleotide in the RNA
sequence. It can be A, G, C or U. A sequence of
bases composes an RNA sequence e.g. CGG AAA
CGA GGG AAACC

 (ii) Base pair In RNA sequence AU, UA, GC, CG, GU
and UG bonds are referred to as base pairs. For
instance in Fig. 1B, there are four base pairs: CG,
GC, GC and CG in the sample sequence CGG AAA
CGA GGG AAACC.

 (iii) RNA target structure This structure defines the base
and base pair positions in any RNA sequence. It is
often represented in Dot Bracket notation e.g. in
Fig. 1A—((....)).((....))—where the dots represent
base positions while the matching brackets represent
base pair positions. Defining RNA target structure
using dots and matching brackets is a standard nota-
tion generally referred to as Dot Bracket notation. In
this paper, all the target structures are represented in
Dot Bracket notation.

 (iv) Fold structure Given a sample RNA sequence such
as CGG AAA CGA GGG AAACC, it can be folded to
generate a fold structure. There are no guarantees
that the fold structure will match the target structure
since replacing a single base or base pair can result
in a different fold structure. Many algorithms that can
be used to achieve this already exist e.g. Hofacker
et al. [36], Zuker et al. [88].

 (v) Hamming distance Hamming distance [32] is a
mathematical formulae used to measure the distance
between two strings of equal length. Given string
s1 and s2 of equal length, the hamming distance is
the number of positions where the two strings dif-
fer. In this context, we evaluate the success of the
RNA Inverse Folding task by computing the ham-
ming distance between the target and fold structure.
If the hamming distance is 0 then the RNA Inverse
Folding task is considered solved. Mathematically it
is represented as follows:

 where s1i and s2i are the ith positions in s1 and s2
respectively. � is the function defined in Eq. (2).

 (vi) Folding accuracy While the hamming distance
computes the error value between the target and fold
structure (the differences), the folding accuracy cor-
responds to the percentage of the matching positions
between the two structures. It can be derived from
the hamming distance as shown in Eq. (3).

 where n is the length of the two strings. Throughout
this paper, we use a report the folding accuracy as a
measure of the success of the RNA Inverse Folding
task denoted as accuracy.

 (vii) Correct folding accuracy or expected folding accu-
racy This is the folding accuracy which is equivalent
to 1.0 e.g. the target and fold structure are identical.

 (viii) The GC content The GC content is the percentage of
G and C bases in the RNA sequence. For instance, in
the sequence CGG AAA CGA GGG AAACC, the GC
content is 10

17
 or 58.82%. Both in vitro and in vivo pro-

cesses are affected by the GC content as the quantity
determines the stability of the RNA sequence which
subsequently affects the functional effectiveness [17,
21, 78].

 (ix) In vitro This is Latin for in glass. In this context, we
use the term to refer to the experiments carried out
in a computer or laboratory environment.

 (x) In vivo This is Latin for in life. In this context, we use
the term to refer to the experiments carried out in a
living organism.

 (xi) The Minimum Free Energy (MFE) This is the lowest
conformational energy state of an RNA sequence.
Methods for computing MFE already exist e.g Turn-

(1)H(s1, s2) =

n
∑

i=1

�(s1i, s2i)

(2)�(s1i, s2i) =

{

1 if s1i ≠ s2i
0 otherwise

(3)Accuracy (s1, s2) = 1 −
H(s1, s2)

n

Fig. 1 A Target—((....)).
((....)).—, B sample RNA—
CGG AAA CGA GGG AAACC

SN Computer Science (2024) 5:403 Page 3 of 17 403

SN Computer Science

er’s energy model [51], MultiRNAFold [31], Zuck-
er’s energy model [88] and Nussinov’s energy model
[55]. Similar to the GC content, the MFE also deter-
mines the sequence stability which is a key factor in
the functional effectiveness of an RNA sequence. In
this work, we compute the MFE using Zucker’s MFE
model which is accessible through the Vienna RNA
software [48].

 (xii) Dynamic programming (DP) This is a classical
approach for solving optimization problems where
a solution is obtained by breaking the problem into
smaller sub-problems then combining the solutions
to the sub-problems to obtain the solution to the
main problem. DP methods have been used to solve
RNA Inverse Folding [36] while its formulation also
underlies the Bellman equations [9]. Reinforcement
Learning (RL) solves sequential decision-making
problems by learning the optimal state transition and
value functions through trial and error. The Bellman
equations are fundamental in deriving such functions
[75]. When RNA Inverse Folding is formulated as a
sequential decision-making problem, RL can be used
to solve it [24, 65].

 (xiii) Design position This is a position in the RNA
sequence that is yet to be assigned a base or base
pair in the intermediate RNA sequence s. If the
position accepts a base pair according to the tar-
get structure, then it is a base pair position (accept
GC, CG, AU, UA, GU or UG) otherwise, it is a base
position (accept A, G, C or U). Base pair positions
are assigned simultaneously. This is summarised as
a function in (4).

 where t is the target structure, i is the design position
and A is the set of possible actions.

 (xiv) Deep Neural Network (DNN) Deep Neural Networks
(DNN) are Artificial Intelligence (AI) methods can
learn to approximate any function [37]. They are

(4)

A(t, i) =

{

{A,G,C,U} if ti = .

{GC,CG,AU,UA,GU,UG} if ti = (

commonly used to find a mapping function from
input space X to output space y (supervised learn-
ing) or approximate the distribution and patterns of
the input space X (unsupervised learning). In design,
DNNs are composed of artificial neurons where each
neuron is a mathematical function that computes the
weighted sum of the input data and then applies an
activation function—this simulates the activation of
biological neurons in the brain. In this paper, we used
a DNN to evaluate RNA Inverse Folding states and
select the optimal action (base or base pair) leading
to the best cumulative hamming distance (reward).
The network is then trained by automatically labeling
the states with the reward at the end of a design task
in a self-improving fashion (self-play).

 (xv) Value and policy functions The value function is a
function that evaluates the quality of a state accord-
ing to a scalar variable. For instance, in RNA Inverse
Folding, a value of 1.0 corresponds to the correct
folding accuracy while a value of 0.0 otherwise. A
policy (�) function on the other hand is a function
that selects the optimal action (base or base pair) in
a given state. The policy can be generated from the
value function by selecting the action with the highest
value in any given state e.g. �(s) = argmaxa Q�(s, a)
where � is the policy, s is the state, a is the action and
Q is the value function parameterized by DNN. For
simpler problems, the Q function can be represented
as a table where each row corresponds to a state and
each column corresponds to an action.

While the primary goal in RNA Inverse Folding is to design
an RNA sequence that folds according to the given target
structure, it is also imperative to design a sequence contain-
ing desired GC content and Minimum Free Energy (MFE)
values. The latter and former are key in RNA applications
involving in vitro and in vivo experiments. Accordingly, as
previously mentioned, they control the stability of the RNA
sequence which translates to the effectiveness of the RNA.

We show the RNA Inverse Folding pipeline in Fig. 2,
A. is the target structure (in Dot Bracket notation) B is

Fig. 2 RNA Inverse Folding pipeline. A The target structure, B the
designed sequence and C the fold structure. The fold structure must
conform to the target structure in any successful RNA inverse folding

task. The paired and unpaired design positions in the target and fold
match then the RNA Inverse Folding task is considered solved

 SN Computer Science (2024) 5:403 403 Page 4 of 17

SN Computer Science

the designed RNA sequence following base pair and base
assignments while C is the fold structure obtained from
folding the designed RNA sequence. According to the tar-
get structure, the position (1, 11) expects a base pair while
12 is a base. These have been assigned accordingly in the
designed RNA sequence e.g. GC and U respectively. This
procedure is repeated to obtain the designed RNA sequence.
To validate if the fold structure matches the target structure,
the paired and unpaired positions in the target structure are
compared to those in the fold structure. If the hamming dis-
tance between the two is 0 then the RNA design task is con-
sidered solved. Given an RNA target structure, many pos-
sible RNA sequences can be designed to fold accordingly.

The success of RNA Inverse Folding can impact biologi-
cal research and application including drug design, nano-
technology, precision medicine, genetic engineering, syn-
thetic biology, bioengineering and material science [12, 16,
27]. These technologies are key in handling some global
challenges such as the rapid development of vaccines and
drugs, the development of technologies to address climate
change and the growing population.

RNA Inverse Folding is one of the challenging tasks in
structural biology. The design of simple RNA sequences can
be solved using dynamic programming methods in O(n3)
time [55, 88]. In addition, some methods have reported
deterministic runtime [11] while others polynomial [66].
The upper bound is NP-hard however [2, 38, 49]. NP-hard
problems are those that cannot be solved in polynomial time
complexity.

Several RNA Inverse Folding methods have been pro-
posed in the past. These include dynamic programming
methods [36], constraint programming [28, 29, 52], sam-
pling methods [46, 59], evolutionary algorithms [26],
genetic algorithms [77], Monte Carlo Tree Search [86],
nested Monte Carlo Tree Search [57], ant-colony optimiza-
tion [43, 44] and RL [24, 65].

While these methods have recorded very promising
results, some of them are limited by their design choice.
Dynamic programming methods are computationally expen-
sive and can only be used to solve simple RNA Inverse Fold-
ing tasks since the whole search space is explored. Sam-
pling-based methods can generalize well, however, they
are limited by the exploration of the search space. While
the evolutionary and genetic algorithms are suited to solv-
ing many optimization problems, they are limited by some
design choices such as the fitness function and search space
exploration leading to local optima convergence. MCTS-
based methods are strong solvers. They can balance the
exploration and exploitation of upper confidence bound
(UCB) [45] is used as a tree policy. These methods, how-
ever, are computationally expensive and other variations
such as nested MCTS [57] include expert heuristics which
can be difficult to scale. RL-based methods are also strong

solvers with the ability to balance exploitation and explora-
tion. While they are prone to convergence issues, some novel
design choices can be used to mitigate such issues.

In this paper, we present an RL-based RNA Inverse
Folding model called Self-Playing RNA Inverse Folding
(SPRNA). The model learns to design RNA sequences that
fold according to the given target structure by performing
a one-step look-ahead using DNN as a value function. The
value function evaluates the base and base pairs at any given
state and selects the optimal action (base or base pair) lead-
ing to the best cumulative reward (folding accuracy). The
network is trained in a self-play fashion where the states
that lead to the expected folding accuracy are automatically
labeled with a positive reward and a negative otherwise.
Deriving the policy from the value function is achieved by
selecting the action with the highest value in the current
state. Accordingly, SPRNA learns to design RNA sequences
that fold according to the given target structure without any
human feedback or hand-engineered folding rules.

We present our contributions as follows:

• RNA Inverse Folding algorithm We present an RNA
Inverse Folding model that learns to improve by itself to
design RNA sequences that accurately fold according to
the given target. The model learns by self-play whereby
the observations that lead to correct folding are auto-
matically labeled with a positive reward and a negative
otherwise. The algorithm is composed of two phases: (i)
the sampling phase where the state observations are col-
lected and (ii) the learning phase where the observations
are used to train the value function to improve the policy.

• Feature coding scheme This is the method used to encode
states during the RNA Inverse Folding process. In this
work, we present a new feature coding scheme for the
RNA Inverse Folding states. It is composed of a sequence
of binary codes representing different states controlled by
a feature parameter.

• Local search improvement We proposed a local search
improvement method for the candidate solutions that
do not have expected fold accuracy. Accordingly, the
base pairs are broken or formed in the designed RNA
sequence according to the target structure constraints.
This idea is inspired by the existing methods, however,
in our case it is only performed if the hamming distance
between the target and fold structure is less than some
threshold value �.

While this paper builds on the work of Obonyo et al. [56]
there are several key differences as outlined below:

 (i) The value network architecture RNASP the value
network was composed of two layers of CONV →
BN → ReLU followed by an Adaptive Pooling layer,

SN Computer Science (2024) 5:403 Page 5 of 17 403

SN Computer Science

an FC layer, a Dropout layer and two FC layers. In
this paper, the network design follows CONV→
NORM→RELU design with skip connection [33].
This design pipeline is repeated four times followed
by one Adaptive Pooling and FC layer, one Dropout
layer [73], and two FC layers. While RNASP was
normalized using BN [39] the network normalization
in this paper was achieved using Layer Normalization
(NORM) [8]. In addition, the network in this paper is
deeper than RNASP.

 (ii) Feature selection The feature selection in RNASP
was composed of binary codes that represent the
known and unknown states. In this paper, a similar
coding scheme was used, however, a feature control
parameter is introduced to allow robust state feature
representation.

 (iii) Test data set RNASP was trained on 65K instances
prepared according to Runge et al. [65]. It was then
tested on datasets used by Runge et al. [65], Taneda
[77] and Kleinkauf et al. [44] models. In this paper,
the proposed model was trained and tested on similar
datasets, however, during testing datasets A and B
(test and train set from Kleinkauf et al. [44]) were
combined into one test set. In addition, the proposed
model is tested on a new test set to validate its per-
formance. The dataset was prepared according to
Anderson-Lee et al. [5].

 (iv) Comparative models incaRNAfbinv [60] is one of the
comparative models presented in Obonyo et al. [56].
The model did not record competitive results, thus,
its results were not included in this paper. Three new
comparative models, however, have been introduced
in this paper including NEMO [57], MCTS-RNA
[86] and LEARNA [65]. The first model is a nested
Monte Carlo Tree (NMCTS) [13] search algorithm,
the second is based on classical Monte Carlo Tree
Search (MCTS) with Upper Confidence Boundary
(UCB) [45] while the last is based on the Proximal
Policy gradient algorithm [70].

The rest of this paper is organized as follows “Reinforce-
ment Learning” covers Reinforcement Learning and
related concepts key to this work, “Related Work” pre-
sents the related work, “Methods” introduce the meth-
ods used in this work including the algorithmic design,
model testing and evaluation, “Experiments” includes
the experiments carried out in this work as well as the
results, “Discussion” discusses the obtained results while
“Future Work” composes the future research perspectives
and conclusion in “Conclusion”.

Reinforcement Learning

Machine Learning (ML) is a branch of Artificial Intelligence
(AI) that involves designing algorithms that learn from data
and improve over time. There are two main types of ML: (i)
supervised and (ii) unsupervised ML. In supervised ML, the
algorithms learn from labeled data where the objective is to
learn a mapping function f from the input to the output e.g.
y = f (X) where X is the input and y is the output. Importantly,
each sample si ∈ X is assumed to be independent and identi-
cally distributed (i.i.d) e.g. a given sample si is independent of
the other samples sj ∈ X where j ≠ i.

Several supervised ML algorithms exist such as Support
Vector Machines (SVM) [18], Decision Trees [58], Random
Forests [10], Neural Networks Rosenblatt [62] and Naive
Bayes [61]. The algorithms can be applied to solve both the
regression—where the output is a continuous value—and clas-
sification—where the output is a discrete value—problems.
In unsupervised ML there are no labels or targets associated
with each sample and the goal is to find underlying patterns
in the data e.g. clusters which can be used to group similar
samples. Unsupervised ML algorithms include K-means [50]
and Principal Component Analysis (PCA) [85]. By extension,
unsupervised ML algorithms can be used as a preprocessing
step in supervised ML problems e.g. to reduce the dimension-
ality of or to identify and remove repetitive samples in the data.

Reinforcement Learning (RL) is a variation of super-
vised ML that involves learning by trial and error. In RL the
labels are not explicitly provided, instead, the agent learns by
interacting with the environment and collecting positive and
negative rewards. The actions that lead to positive rewards
are reinforced while those that lead to undesirable rewards
are discouraged. RL agent can be formally represented as a
Markov Decision Process composed of a tuple (S,A,P,R, �) .
S is the state space, A is the set of actions to be taken at any
given step, P(s, a, s�) is the transition function that encodes
the probability of moving to the next state s� ∈ S given the
current state s ∈ S and action a ∈ A , R(s, a) is the reward
function that defines the reward obtained by the agent upon
taking an action a ∈ A in a given state s ∈ S . � is the control
parameter referred to as the discount factor which deter-
mines the relative importance of future rewards. A policy �
(s, a) defines how in any given state s ∈ S the agent selects
an action a ∈ A . The goal of an RL agent is to learn the
optimal policy �∗ that maximizes the expected cumulative
reward. This can be formally expressed as a value function
V�(s) under policy � as shown in Eq. (5).

where �� is the expectation of the reward obtained by the
agent over episodes (trajectories) following policy � and

(5)V�(s) = ��

[

∞
∑

k=0

�kr(st, at) ∣ s0 = st

]

 SN Computer Science (2024) 5:403 403 Page 6 of 17

SN Computer Science

r(st, at) is the reward obtained by the agent at time t when it
is in state st and takes action at.

The value function can also be represented as a state-
action function Q�(s, a) where � is the policy, s is the state
and a is the action as shown in Eq. (6).

The optimal policy �∗ is the policy that maximizes the value
function V�(s) or the state-action function Q�(s, a) as shown
in Eqs. (7) and (8) respectively.

In RL the discount factor determines how much the current
reward is weighted toward future rewards. The inclusion of
the discount factor in the RL target underscores the differ-
ence between RL and classical supervised ML. In addition to
this, samples in RL are not i.i.d. e.g. the current state at time
t is dependent on the previous state at time t − 1.

There are four variations of RL algorithms (i) value-
based, (ii) policy gradient, (iii) actor-critic and (iv) model-
based. In value-based RL, the agent learns the state value
or action-value function and derives the policy from the
value function e.g. Q-learning [82] and SARSA [64]. In
policy gradient RL, the agent learns the policy directly
(without calculating the state or action value) according
to the RL objective functions in Eqs. (5) or (6) e.g. REIN-
FORCE [84]. Policy gradient methods are prone to high
variance which makes learning and generalization hard. To
address this problem, actor-critic (AC) method proposed a
learning objective that includes both the policy and value
(or advantage) functions. In AC, the actor selects the
action while the critic evaluates the quality of the action
relative to others—the advantage function. The advantage
function encourages the selection of actions that are bet-
ter than the average action in the current state while also
controlling the variance of the reward estimates. Common
actor-critic methods include A2C and A3C [54], Proxi-
mal Policy Optimization (PPO) [70], Deep Deterministic
Policy Gradient (DDPG) [47] and Trust Region Policy
Optimization (TRPO) [69]. In model-based the RL agent
learns the model of the environment which then informs
the policy [15, 20, 74].

While in simpler problems policy functions can be rep-
resented as a table, in more complex problems where there
is a large state space e.g. in games such as Go and Chess

(6)Q�(s, a) = ��

[

∞
∑

k=0

�kr(st, at) ∣ s0 = st, a0 = at

]

(7)�∗ = argmax
�

V�(s)

(8)�∗ = argmax
�

Q�(s, a)

and computational biology problems such as RNA Inverse
Folding and assembly of DNA sequences, the value func-
tions are parameterized as supervised ML models such as
neural networks [6, 53]. Using DNN as a policy is gener-
ally referred to as Deep Reinforcement Learning (DRL)
in the RL literature. DRL has been successful in solving
complex problems such as Go [71], Chess [72], StarCraft
II [79], Atari games [53] and computational biology prob-
lems such as RNA Inverse Folding [24, 65]. Owing to the
ability of DNN to approximate represent any function [37]
they are widely used in DRL.

While RL algorithms alleviate the need for labeling
data—a constraint that can be expensive and time-consum-
ing—they are prone to convergence issues. They require
long hours of training which can be computationally expen-
sive. In addition, they are sensitive to the choice of hyper-
parameters e.g. learning rate, discount factor, optimization
algorithm, and network architecture.

Related Work

Several RNA Inverse Folding models have been proposed
in the past decades. The models include concepts and ideas
borrowed from dynamic programming (DP), constraint
programming (CP), and Reinforcement Learning (RL):
value-based and policy gradient methods, graphical models,
probabilistic models, stochastic optimization, physics-based
and energy optimization models, genetic and evolutionary
algorithms, Monte Carlo Tree Search (MCTS), and a com-
bination of MCTS and machine learning (ML).

Eastman et al. [24] proposed an RL-based model to solve
the RNA Inverse Folding problem. The authors used DNN
with residual connections as value functions.

Their method recorded competitive results with limited
comparison to other methods and datasets. In, Runge et al.
[65] the authors proposed a proximal policy gradient algo-
rithm that learns the policy based on neural network gradi-
ent optimization. The output of the network is a probability
distribution over the action base or base pairs (4) with states
encoded using one-hot encoding. The model was trained
and tested on the 65K instances obtained from RFAM [30].
On average it recorded over 0.9 accuracy on the test set,
however, the same was not recorded on a different test set
such as Anderson-Lee et al. [5] and Kleinkauf et al. [43, 44].

MCTS is any-time optimization algorithm that has been
applied to solve complex problems in games and planning
problems [76]. MCTS has also been applied to RNA Inverse
Folding problem recording very competitive and strong
results compared to several baseline models. The MCTS
algorithm is composed of four phases: (i) selection, (ii)

SN Computer Science (2024) 5:403 Page 7 of 17 403

SN Computer Science

expansion, (iii) simulation and (iv) backpropagation. In the
selection phase, the node in the tree with the highest UCB
value is selected. In the expansion phase, the selected node
is expanded by adding a new node to the tree. In the simula-
tion phase, valid actions are selected randomly and applied
until the terminal state is reached. In the backpropagation
phase, the reward obtained in the simulation phase is back-
propagated to update the Q values of the nodes in the tree. In
RNA Inverse Folding, the reward is the folding accuracy or
hamming distance while every node represents a valid base
or base pair assigned to a given design position.

Recently, MCTS-based algorithms have become more
attractive due to three key reasons: (i) the ability to effec-
tively sample large search spaces, and (ii) MCTS is an any-
time algorithm—MCTS can be terminated at any time while
collecting the existing results, (iii) convenient combination
with ML—since Silver et al. [72] the simulation phase of the
MCTS increasingly being replaced with DNN prediction.

Several MCTS algorithms have been proposed for solving
RNA Inverse Folding. The MCTS-based model proposed by
Yang et al. [86] selects the best action according to the UCB
[45] formulae while balancing the exploration and exploita-
tion using a set exploration-exploitation parameter. If the
fold structure does not match the target structure then a local
search is performed to break incorrect base pairs and form
the missing ones according to the target structure constraints.
Portela [57] also proposed a nested MCTS solver which is
guided based on strong hand-engineered rules in the loops,
left and right junctions. Generally, in nested MCTS the solu-
tions in the lower recursive level inform upper level(s) [63].
Nested MCTS methods have been more effective in solv-
ing some hard optimization problems in games and com-
putational biology [13, 63] compared to classical MCTS
at a computational cost. In another work, Cazenave and
Fournier [14] presented an MCTS-based solver composed
of DNN policy evaluation and general rollout adaptation

e.g. combination of MCTS with DNN. MCTS solvers are
strong, however, are computationally expensive and can be
sensitive to the initial parameter and hyperparameter values
of the policy networks.

Garcia-Martin et al. [28] proposed constraint program-
ming model (CP). The constraints were defined according
to the expected MFE values, GC content and base pair dis-
tributions. A model with a similar algorithmic design was
also proposed by Garcia-Martin et al. [29] which could solve
complex RNA Inverse folding tasks. CP-based algorithms
have strong theoretical foundations and can be used to solve
complex problems, however, in the context of RNA Inverse
Folding, they are limited by the set of constraints that must
be specified prior to the design process. Such specifica-
tions can be difficult in a large-scale context or complex
to adapt to new problems. In another study, Minuesa et al.
[52] presented a CP model that included stronger heuristics
and restart strategies. These restart strategies could guide
the search to the global optimum. According to the authors,
the model could design RNA sequences that are usable
in in vitro as well as in vivo. Despite this argument, this
method also inherits the limitations of CP-based methods
previously mentioned.

Besides the above-mentioned RNA Inverse Folding meth-
ods, other researchers have also proposed different design
approaches including weighted sampling approaches [59],
genetic algorithms [4, 22, 41, 77], adaptive sampling with
optional search improvement [46, 59], dynamic program-
ming [36], evolutionary algorithms with heuristics [25, 26],
ant colony optimization [43, 44] and graphical and shape-
aware solvers [7, 23, 41, 83].

Overall, the existing RNA Inverse Folding methods have
recorded very promising results. However, in the design
of a new method, it is imperative to design algorithms that
are not only accurate and generate RNA sequences with
expected MFE and GC content but also loosely dependent
on human supervision (e.g. can automatically self-improve).

Fig. 3 SPRNA episode over
a sample target structure ∙
(∙ ∙)∙ , each state value can be
known unpaired, known paired,
unknown paired or unknown
unpaired. The designed
sequence is folded to generate
the fold structure which is then
compared to the target

 SN Computer Science (2024) 5:403 403 Page 8 of 17

SN Computer Science

The latter is important in the design of RNA Inverse Fold-
ing methods as it underlies the scale and cost of the RNA
Inverse Folding.

Methods

RNA Inverse Folding as a Markov Decision Process

RNA Inverse Folding can be formulated as a Markov Deci-
sion Process (MDP) according to {A,S,P,R, �} . A is the
set of actions that can be taken in any state—{A,C,U,G, }
for base design positions and {AU,UA,GC,CG,GU,UG}
for base pairs, S is the state composed of a binary sequence
of length N where the known and unknown states are coded
according to Table 1 in Obonyo et al. [56]. In this paper, a
state is known if the design position is assigned a base or
base pair and unknown otherwise. P is a deterministic tran-
sition function that models state change from st to st+1 with
a probability of 1. R is the reward which is 0 in all states
except the terminal state where it is + 1 if the hamming

distance between the target and fold structure is 0 and − 1
otherwise. The discount factor � is set to 1 so that the agent
only the value of the immediate reward.

The SPRNA Algorithmic Design

The SPRNA requires no expert knowledge to learn except the
rules of RNA Inverse Folding. Given a set of valid actions
and the coded state st , a one-step look-ahead state evalua-
tion is performed using the value network, v� , to select the
optimal action from a set of valid actions At = {A,C,U,G, }
for base design positions and {AU,UA,GC,CG,GU,UG} for
base pairs. The value network v� returns the the value associ-
ated with each valid action. The optimal action is selected
according to the epsilon-greedy (�greedy) policy to allow
for the balancing of exploration and exploitation e.g. with
probability � the action is selected randomly and with prob-
ability 1 − � the action with the the highest value is selected.
The pseudocode of the SPRNA value algorithm is presented
in Algorithm 1.

Algorithm 1 Value algorithm

1: Input: st, At, ε, vθ, δ
2: Output: at
3: V ← vθ(st,At) {At is bases or base pairs}
4: ai ← εgreedy(ε, V)
5: at ← At[ai]
6: return at

Algorithm 2 �greedy function

1: Input: ε, V {V is the value of each action}
2: Output: at
3: random ← random(0, 1)
4: if random < ε then
5: at ← random(0, length(V)) {Exploration: select a random action}
6: else
7: at ← argmaxa∈At V {Exploitation: select the best action}
8: end if
9: return at

SN Computer Science (2024) 5:403 Page 9 of 17 403

SN Computer Science

Algorithm 3 The self-play algorithm. Execute a single episode

1: Input: vθ, B, target, ε, δ
2: Output: B
3: seq ← target {Initialize the fold as the target}
4: for all i ∈ {1, . . . , length(target)} do
5: At ← getActions(target[i])
6: at ← value(st, At, ε, vθ)
7: seq[i] ← applyAction(at)
8: st ← encodeState(seq)
9: B ← B ∪ {st} {Save the state in the replay buffer}

10: end for
11: seq ← LS(seq, target, δ) {Local search. Details in Section 4.4}
12: foldstruct ← Fold(seq) {Generate the fold structure}
13: r ← H(target, foldstruct) {H is the hamming distance function (Equation 3)}
14: if r = 0 then
15: r ← 1
16: else
17: r ← −1
18: end if
19: for all i ← 1 to length(B) do
20: B[i] ← B[i] ∪ {r} {Label each state with the reward}
21: end for
22: return B

Initially, � is set to 0.1 and then decays exponentially as a
function of SPRNA training epochs. The self-play algorithm
accepts the target and value network as input and runs a sin-
gle episode over the paired and unpaired design positions.
Every design position is encoded, and then optimal action is
obtained by calling the value Algorithm 1. The action is then
applied to the current state to obtain the next state which is
saved in the replay buffer B . At the end of the episode, each
state in the replay buffer is labeled with a + 1 reward if the
hamming distance between the target and fold structure is 0
and − 1 otherwise.

As an example, a sample SPRNA episode is shown in
Fig. 3. Initially, the fold sequence is initialized as the target
sequence. In every step of the episode, the state is encoded
and passed to the value network to obtain the optimal action
(base or base pair) which is then applied to the current state
to obtain the next state.

Feature Selection

The self-play Algorithm 3 returns a replay buffer B com-
posed of states and their corresponding labels. The states are
the features while the labels are the targets. These are used to
train the value network v� by minimizing the mean squared
error (MSE) (shown in Eq.) loss function.

The replay buffer size is limited to 20K as such the oldest
samples are removed from the buffer. The generation and
update of the training samples and training of the value net-
work are automated e.g. there is no need for human supervi-
sion. AI for games literature refers to this as self-play [72]
where the agent learns to improve by itself by collecting
observations and improving the policy function. Self-play

(9)L(r, s) =
1

N

N
∑

i=1

(ri − v�(si))
2

Fig. 4 SPRNA value network. CONV convolutional layer, NORM layer normalization, ReLU rectified linear units, FC fully connected layer,
POOL adaptive pooling layer. s

t
 is the is the encoded state and the network outputs a scalar reward value

 SN Computer Science (2024) 5:403 403 Page 10 of 17

SN Computer Science

has been successful in solving complex problems such as
Chess [72] and GO [71].

State representation (line 8 in Algorithm 3) is a key com-
ponent of any RL algorithm. In this paper, we adopt the
state representation proposed in Obonyo et al. [56] which is
composed of encoding states as a sequence of binary codes
for the known and unknown states. Bases {A, G, U, C} are
encoded using 0000, 0001, 0010, 0100, and 1000 binary
codes respectively while base pairs {GC, CG, AU, UA,
UG, GU} are encoded using 0010, 0111, 0101,1000,1001,
0110 binary codes respectively. We refer to the former as
known unpaired and the latter as known paired. The match-
ing parenthesis of Dot Bracket (unknown paired) is encoded
using 1010 and the dots (unknown unpaired) using 1011. We
experimented with one-hot encoding, however, it performed
worse than our proposed encoding scheme.

As an example, given a target structure ∙(∙ ∙)∙ , the move
positions are defined by { 1, (2, 5), 3, 4, 6 } . Given that the
move position is 1 and the value function returns A as the
optimal action, state st+1 becomes A(∙ ∙)∙ . Similarly, after
a one-time step, the state st+2 becomes AG∙ ∙C∙ with (2, 5)
as the move position and GC as the optimal action. Impor-
tantly, the base pairs are assigned simultaneously and the
move positions are indexed in the intermediate sequence
(seq) and then encoded according to the procedure discussed
in the preceding paragraph before being passed to the value
function. This process is repeated until all the base and base
pair positions are assigned.

In this paper, we also introduce a feature control param-
eter W to allow for richer state feature representation by
determining the overlap between the move positions. For
example, based on the ∙(∙ ∙)∙ example, if move locations
are defined by the set {(1), (2, 5), (4), (3), (6)} then W is 1.
If W = 2, then the set defining move locations becomes {
(1, (2, 5)), ((2, 5), 4), (4, 3), (3, 6)} and {(1, (2, 5), 4), ((2,
5), 4, 3), (4, 3, 6)} if W = 3. Thus in the latter and former
move position instances, there is an overlap between the
design positions. This permeates robust state feature rep-
resentation as our experimentation with one-hot encoding
performed worse. In the experiments, W was varied between
1 to 6. In Obonyo et al. [56], the value was set to 1 through-
out the experiments. its value was set to 1 throughout the
experiments.

Local Search (LS) Improvement

If the hamming distance between the target and fold struc-
ture is greater than 0, and the distance is below or equal to
the threshold � , then a local search procedure is performed
to improve the solution. This procedure is key in instances
where the target structure can be obtained by performing a
few mutations on the designed RNA sequence. In the experi-
ments, � was set to 0.1. The local search procedure is shown
in Algorithm 4. The procedure is similar to the one proposed
in Yang et al. [86], however, in this paper, it is constrained
by the hamming distance threshold �.
Algorithm 4 LS function

1: Input: seq, target, δ
2: Output: seq
3: foldstruct ← Fold(seq)
4: hamming distance ← H(target, foldstruct)
5: if hamming distance ≤ δ and hamming distance > 0 then
6: seq ← random mutation(seq)
7: end if
8: return seq

SN Computer Science (2024) 5:403 Page 11 of 17 403

SN Computer Science

The Value Network

The value network design is shown in Fig. 4. The coded
state (st) is fed into the network to generate a scalar reward
signal. The network design is composed of Convolutional,
Normalization, Rectified Linear Units, Fully connected
and Adaptive Pooling layers. The network architecture also
includes skip (residual) connections which allow for training
deeper network models with no performance degradation
[33] as training DNN with many layers generally leads to
worse performance due to the vanishing gradient problem
[34]. The Layer Norm (LN) [8] enables the normalization
of activations across the input features dimension enabling
faster training and reducing the model overfitting. This is as
opposed to Batch Norm (BN) [39] used in Obonyo et al. [56]
which normalizes the activations across the batch dimen-
sion. There are three key differences between this value net-
work and Obonyo et al. [56]. The network is training based
on the sample output from the self-play Algorithm 3. This

is achieved by running the self-play algorithm over several
training target structures, updating the training samples then
training the value network. This procedure is concretely
shown in Algorithm 5. The full network training such as
details such as the parameter and hyperparameter configura-
tions is shown in Appendix 1.

Table 1 Test dataset statistics

Name Total sequences Source Train Average length

A & B 146 Kleinkauf et al.
[44]

X 103.24

C 29 Taneda [77] X 191.87
D 100 Runge et al. [65] X 247.87
E 65K Runge et al. [65] ✓ 243.70
F 100 Anderson-Lee

et al. [5]
X 159.01

Table 2 SPRNA results on A & B

The bold shows the best score entry

W Correct/146 MFE GC

1 100 − 61.20 49.21
2 105 − 62.89 52.16
3 110 − 62.76 53.02
4 123 − 62.19 56.55
5 114 − 64.63 52.91
6 113 − 61.10 51.85

Table 3 SPRNA results on C

The bold shows the best score
entry

W Correct/29 MFE GC

1 18 − 58.22 54.16
2 17 − 62.18 51.62
3 19 − 60.57 53.14
4 24 − 63.35 55.62
5 20 − 49.83 46.45
6 21 − 60.09 53.36

Table 4 SPRNA results on D

The bold shows the best score entry

W Correct/100 MFE GC

1 80 − 40.21 58.08
2 85 − 47.38 56.74
3 90 − 58.90 57.26
4 92 − 59.92 51.64
5 88 − 60.28 58.23
6 89 − 52.45 57.68

Table 5 SPRNA results on F

The bold shows the best score entry

W Correct/100 MFE GC

1 50 − 58.96 49.15
2 52 − 61.76 49.15
3 56 − 61.88 47.64
4 69 − 60.47 51.82
5 59 − 55.62 50.33
6 58 − 54.59 59.09

Table 6 Folding accuracy
comparative analysis. SPRNA
entry is based on W = 4

The bold shows the best score entry

Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] 87 100 102 100 85 105 110
C [/29] 20 24 23 18 11 21 24
D [/100] 79 85 91 80 75 88 92
F [/100] 55 95 70 71 52 68 69

 SN Computer Science (2024) 5:403 403 Page 12 of 17

SN Computer Science

Algorithm 5 SPRNA training algorithm
1: initialize network vθ, expoloration parameter ε,batch size b, epochs, δ
2: targets ← getTargets()
3: train samples ← ∅
4: for epoch ← 1 to epochs do
5: for all i ∈ {1, . . . , length(targets)} do
6: B ← self-play(vθ, targets[i], ε, δ)
7: train samples ← train samples ∪ B
8: if i mod b = 0 then
9: samples ← sample(targets, b)

10: vθ ← train(vθ, samples)
11: end if
12: end for
13: end for

Table 7 GC content
comparative analysis

Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] 48.21 50.23 51.22 49.45 50.76 49.82 53.58
C [/29] 48.00 52.12 50.33 45.89 52.09 50.01 52.83
D [/100] 51.31 52.85 51.03 53.76 48.40 51.23 56.34
F [/100] 52.05 53.01 54.50 49.94 50.12 53.20 54.26
Average 49.89 52.05 51.77 49.76 50.34 51.10 54.25

Table 8 MFE comparative
analysis

Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] − 28.23 − 30.35 − 35.45 − 53.50 − 49.62 − 31.05 − 50.01
C [/29] − 26.08 − 29.98 − 40.23 − 57.47 − 59.64 − 37.20 − 56.44
D [/100] − 28.15 − 31.01 − 45.23 − 51.10 − 47.48 − 47.34 − 57.34
F [/100] − 25.33 − 33.22 − 42.55 − 50.03 − 54.33 − 51.12 − 48.33
Average − 26.95 − 31.14 − 40.87 − 53.09 − 52.77 − 41.68 − 53.03

Table 9 Average time taken Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] 1.17 2.17 5.17 1.07 9.25 8.23 3.09
C [/29] 2.12 2.12 6.98 2.50 14.99 17.70 3.30
D [/100] 1.16 3.50 4.02 3.53 41.78 10.01 2.58
F [/100] 10.22 5.09 8.98 10.01 50.23 25.00 4.10
Average 3.67 3.22 6.29 4.28 29.06 15.24 3.26

Fig. 5 Sample correct fold from
A & B

SN Computer Science (2024) 5:403 Page 13 of 17 403

SN Computer Science

Some key differences between the value network in
SPRNA and Obonyo et al. [56] are (i) the SPRNA uses Layer
Norm (LN) [8] while Obonyo et al. [56] uses Batch Norm
(BN) [39], (ii) the SPRNA uses skip connections [33] while
Obonyo et al. [56] does not, and (iii) the SPRNA has 16 lay-
ers while Obonyo et al. [56] has 11 layers.

Datasets

SPRNA was trained on a dataset containing 65K RNA tar-
get sequences obtained from RFAM [30] and compiled by
Runge et al. [65]. Following the training, it was tested on
four benchmark datasets. Contrary to Obonyo et al. [56], in
this paper, the training and testing samples from Kleinkauf
et al. [44] are combined leading to a total of 146 sample
samples. The RFAM dataset is generally used to benchmark
RNA Inverse Folding methods and it is one of the largest
datasets and commonly used by several methods [65, 77].
Also, the SPRNA was tested on a new benchmark test data-
set prepared according to Anderson-Lee et al. [5]. It con-
tains a total of 100 sequences including simple as well as
complex samples. This dataset was prepared to allow testing
RNA Inverse Folding methods on new complex target struc-
tures. A summary of all the training and testing datasets is

presented in Table 1. The data name entry corresponds to
the name of the authors.

Experiments

After training, the SPRNA model was tested and its per-
formance was compared to some existing baselines. The
baselines were selected based on two key criteria: (i) the
methodology used to solve the RNA Inverse Folding prob-
lem: e.g. tree search, RL, etc., and (ii) their performance on
the benchmark datasets: the existing strong baselines were
selected. The baselines included (i) MODENA [77]: evo-
lutionary algorithm, (ii) NEMO [57]: nested MCTS, (iii)
RNAiFold [28]: constraint programming, (iv) RNAInverse
[35]: dynamic programming, (v) LEARNA [65]: policy gra-
dient and (vi) MCTS-RNA [86]: MCTS. The abbreviations
are as follows: RNAiFold is abbreviated as iFold, RNAIn-
verse: Inv., and MCTS-RNA: MCTS. The MFE values were
computed using the Vienna software [48]. The SPRNA
results with different W values are presented in Tables 2,
3, 4 and 5. The results of the best SPRNA model according
to W compared some existing baselines are presented in
Tables 6, 7, 8 and 9.

Fig. 6 Sample correct fold
from C

Fig. 7 Sample correct fold
from D

 SN Computer Science (2024) 5:403 403 Page 14 of 17

SN Computer Science

Discussion

In this section, we discuss the SPRNA results according to
the control parameter W , folding accuracy, MFE and GC
and the time taken during the design process. We also dis-
cuss some complexity associated with the test datasets and
the SPRNA model.

On the control parameter W . The W the parameter controls
the feature representation of the state (discussed in methods
”Feature Selection”). The value was varied between 1 to 6 with
W = 4 recording folding accuracy of 123/146 (84.24%), 24/29
(82.75%), 92/100 (92%) and 69/100 (69%) on test datasets A
&B, C, D and F, respectively. We compared these results in
a standard encoding scheme such as one-hot encoding and
obtained folding accuracy of 90/146 (61.64%), 19/29 (65.51%),
85/100 (85%) and 59/100 (59%) on test datasets A &B, C, D
and F respectively. This corresponds to a 22.6, 17.24, 7 and 10%
improvement on test datasets A &B, C, D and F, respectively.
This also shows that our feature representation was richer than
the one-hot encoding.

On folding accuracy We benchmarked SPRNA (W = 4)
with existing baselines on test datasets A &B, C, D and
F. SPRNA recorded the best result on two test datasets; A
&B and D, while recording a similar score to NEMO on
test dataset C. NEMO also recorded the best result on the
test dataset C. NEMO [57] is a nested MCTS algorithm;
MCTS the algorithm where lower-level results are used to
bootstrap the upper-level results [13]. NEMO is a strong
algorithm, however, it includes complex hand-engineered
heuristics such as different distributions of base and base
pairs in junctions and loops. While such constraints are key
in RNA Inverse Folding, they do not scale well in large-scale
RNA engineering. In contrast, SPRNA does not have such
constraints: it automatically learns the correct base and base
pair distributions without any supervision or rules. This is
achieved by training the policy function through self-play
(self-improvement). While LEARNA can also be consid-
ered a self-improving algorithm (policy gradient), it is out-
performed by our model on all the test datasets. Moreover,

its design objective, learning and state representation are
different from SPRNA. The LEARNA recorded a folding
accuracy of 105/146 (71.92%), 21/29 (72.41%), 88/100
(88%) and 68/100 (68%) on test datasets A &B, C, D and F
respectively. Accordingly, this corresponds to a margin of
12.32, 9.83, 4 and 1% when compared to SPRNA(W = 4) on
test datasets A &B, C, D and F, respectively. Furthermore,
SPRNA also outperformed MODENA, RNAiFold, RNAIn-
verse and MCTS-RNA on test datasets A &B, C, D and F.
MCTS-RNA (abbreviated as MCTS in the results table) is
an MCTS-based algorithm that selects an optimal action by
performing several simulations and then backpropagating
the reward signal at the end of the simulation to reinforce the
action selection process. This is achieved by incrementally
building the tree, and collecting statistics such as the number
of node visits and average Q-values. While MCTS-RNA was
run for 500 simulations, we were able to get better results
with 1 simulation using SPRNA e.g. in every step of the epi-
sode a one-step look-ahead is performed until the terminal
state when all the design positions are filled (single simula-
tion). Besides the performance gains, SPRNA was able to
design RNA sequences that other baselines failed to design
e.g. Figure 5 (from test dataset A & B), Fig. 6 (test dataset
C), and Fig. 7 (test dataset D), are such examples. SPRNA
learned to correctly balance the base and base pair distribu-
tion in left and right junctions and the loops.

On MFE and GC content In RNA Inverse Folding is
important for designing a model which not only accurate
but also designs sequences with desired MFE and GC con-
tent values. The latter and the former properties determine
the functional effectiveness of the RNA sequences in both
in vitro and in vivo [40, 80]. While there is no conclusive
argument on the optimal MFE and GC content values,
sequences with higher GC content and lower MFE values
are generally more stable [17, 78]. According to Table 7
SPRNA (W = 4) recorded the highest mean GC content
value of 54.25% compared to other baselines; RNAInverse:
49.89%, NEMO: 52.05%, MCTS: 51.77%, iFold: 49.76%,
MODENA: 50.34% and LEARNA: 51.10%. This corre-
sponds to a margin of 4.36, 2.2, 2.48, 4.49, 3.91 and 3.15%
respectively. SPRNA and NEMO recorded the lowest mean
MFE values of − 53.03 and − 52.05 respectively which can
be translated to higher stability.

Table 10 Parameter/hyperparameter for the value network

Parameter/hyperparameter/setting Value

Dropout 0.4
Learning rate 1e−05
Optimizer Adam
First CONV features 64
Second CONV features 64
Kernel size 4
Adaptive pooling size 2
Batch size 32
Learning rate decay exponential
Epochs 100

Table 11 SPRNA with one-hot encoding

Data Solved MFE GC content

A & B [/146] 90 − 69.20 51.34
C [/29] 19 − 40.40 55.10
D [/100] 85 − 43.31 48.22
F [/100] 59 − 38.12 53.45

SN Computer Science (2024) 5:403 Page 15 of 17 403

SN Computer Science

On the inference time Time complexity is a key factor in
any computational problem. We benchmarked how long the
SPRNA (W = 4) takes to design RNA sequences on average.
The average time is reported in seconds and only includes
the inference time. The average SPRNA inference time
across the test dataset was 3.26 s while the baselines 3.67,
3.22, 6.29, 4.28, 29.06 and 15.24 s for RNAInverse, NEMO,
MCTS, iFold, MODENA and LEARNA respectively. This
corresponds to a margin of 0.41, 0.04, 3.03, 1.02, 25.8 and
11.98 s respectively. SPRNA recorded the second-lowest
average inference time.

On the test datasets The test datasets A &B, C, D and F
are different in terms of the complexity of the target struc-
tures. Test datasets A &B, C and D are relatively simple
compared to test dataset F. Complexity of dataset F is attrib-
uted to the dataset generation process which included com-
plex junctions and stem loops for the Eterna 100 challenge.
We refer the readers to Anderson-Lee et al. [5] for more
details. Such complexities, however, we are not part of the
SPRNA training dataset yet SPRNA still recorded a com-
petitive performance on test dataset F-69/100 (69%).

This shows that SPRNA learns novel RNA folding pat-
terns that can be generalized to new unseen target struc-
tures. We argue that augmenting the SPRNA training set
with complex RNA sequences can improve its generaliz-
ability subsequently leading to better performance on more
complex RNA Inverse Folding problems tasks. This is a key
future research direction.

Future Work

SPRNA has recorded very competitive yet promising results.
Despite this, however, it did not perform well on dataset F
containing complex loops and junctions (for Eterna chal-
lenging puzzles). Part of our future work will involve aug-
menting the training dataset with complex sequences to
allow for better generalization and performance. In addition,
we are also keen on designing molecular-aware value and
policy networks that accept bases and base pairs as atomic
input of Nitrogenous bases. This can be achieved by using
graph neural network architectures such as GNN [42] or
RGCN [68]. This design choice can lead to better perfor-
mance due to better molecular representation.

Conclusion

In this paper, we presented a new RNA Inverse Folding
model called SPRNA. By performing a one-step look-
ahead using a deep value network, it selects the optimal
action given base or the base pair set. The model recorded
the best score on two test datasets while recording similar

accuracy performance on one dataset. An RNA Inverse
Folding model should design sequences that fold accord-
ing to the given target as well as have the desired MFE
and GC content. SPRNA designed GC-richer thus more
stable sequences. Augmenting the training dataset with
complex samples can help a one-step look-ahead model
like SPRNA design complex RNA. Similarly, designing
molecular-aware policy or value networks can also lead to
better performance. The latter and the former are two key
interesting future research fronts.

Appendix 1 Value Network Training

The value network was trained according to the following
parameters and hyperparameter constraints. These were
selected using Optuna [1]. framework (Table 10).

Appendix 2 One‑Hot Feature Encoding
Results

The experiments according to one-hot encoding did not
yield better scores compared to the coding scheme of the
results presented in the experiment section of this paper
(Table 11).

Appendix 3 Software and Hardware Settings

The SPRNA was trained with PyTorch 1.13 and Python 3.7.
All the experiments were run on NVIDIA V100.

Acknowledgements This work was granted access to the HPC/AI
resources of IDRIS under the allocation 2023-AD010614071 made
by GENCI.

Data availability All the datasets used in this work are publicly avail-
able. All the references for training and testing datasets are provided
in Table 1.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References

 1. Akiba T, Sano S, Yanase T, et al. Optuna: a next-generation hyper-
parameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, 2019, p. 2623–2631.

 SN Computer Science (2024) 5:403 403 Page 16 of 17

SN Computer Science

 2. Akutsu T. Dynamic programming algorithms for RNA second-
ary structure prediction with pseudoknots. Discrete Appl Math.
2000;104(1–3):45–62.

 3. Alberts B, Johnson A, Lewis J, et al. Molecular motors. Molecu-
lar biology of the cell. 4th ed. New York: Garland Science; 2002.

 4. Anderson JW, Sizikova E, Badugu A, et al. FRNAkenstein:
multiple target inverse RNA folding. BMC Bioinformatics.
2012;13:1–12.

 5. Anderson-Lee J, Fisker E, Kosaraju V, et al. Principles for pre-
dicting RNA secondary structure design difficulty. J Mol Biol.
2016;428(5):748–57.

 6. Anthony T, Tian Z, Barber D. Thinking fast and slow with deep
learning and tree search. Advances in Neural Information Process-
ing Systems 2017;30:5366–5376.

 7. Avihoo A, Churkin A, Barash D. RNAexinv: an extended inverse
RNA folding from shape and physical attributes to sequences.
BMC Bioinformatics. 2011;12:1–8.

 8. Ba JL, Kiros JR, Hinton GE. Layer normalization. 2016. arXiv
preprint arXiv: 1607. 06450

 9. Bellman R. A Markovian decision process. Journal of Mathemat-
ics and Mechanics. 1957;6:679–84.

 10. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 11. Bringmann K, Grandoni F, Saha B, et al. Truly subcubic

algorithms for language edit distance and RNA folding via
fast bounded-difference min-plus product. SIAM J Comput.
2019;48(2):481–512.

 12. Busch A, Backofen R. Info-RNA—a fast approach to inverse RNA
folding. Bioinformatics. 2006;22(15):1823–31.

 13. Cazenave T. Nested Monte-Carlo search. In: Twenty-First Inter-
national Joint Conference on Artificial Intelligence, 2009.

 14. Cazenave T, Fournier T. Monte Carlo inverse folding. In: Monte
Carlo Search: First Workshop, MCS 2020, Held in Conjunction
with IJCAI 2020, Virtual Event, January 7, 2021, Proceedings 1.
Springer; 2021. p. 84–99.

 15. Chua K, Calandra R, McAllister R, et al. Deep reinforcement
learning in a handful of trials using probabilistic dynamics
models. Advances in Neural Information Processing Systems
2018;31:4759–4770.

 16. Churkin A, Retwitzer MD, Reinharz V, et al. Design of RNAs:
comparing programs for inverse RNA folding. Brief Bioinformat-
ics 2018;19(2):350–8.

 17. Cleaves HJJ, et al. Watson–Crick pairing. Encyclopedia of astro-
biology. 2015. p. 2650.

 18. Cortes C, Vapnik V. Support-vector networks. Mach Learn.
1995;20:273–97.

 19. Crick F. Central dogma of molecular biology. Nature.
1970;227(5258):561–3.

 20. Deisenroth M, Rasmussen CE. Pilco: a model-based and data-
efficient approach to policy search. In: Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011,
p. 465–72.

 21. Doherty EA, Batey RT, Masquida B, et al. A universal mode of
helix packing in RNA. Nat Struct Biol. 2001;8(4):339–43.

 22. Dromi N, Avihoo A, Barash D. Reconstruction of natural RNA
sequences from RNA shape, thermodynamic stability, mutational
robustness, and linguistic complexity by evolutionary computa-
tion. J Biomol Struct Dyn. 2008;26(1):147–61.

 23. Drory Retwitzer M, Reinharz V, Ponty Y, et al. incaRNAfbinv:
a web server for the fragment-based design of RNA sequences.
Nucleic Acids Res. 2016;44(W1):W308–14.

 24. Eastman P, Shi J, Ramsundar B, et al. Solving the RNA design
problem with reinforcement learning. PLoS Comput Biol.
2018;14(6): e1006176.

 25. Esmaili-Taheri A, Ganjtabesh M. ERD: a fast and reliable
tool for RNA design including constraints. BMC Bioinform.
2015;16(1):1–11.

 26. Esmaili-Taheri A, Ganjtabesh M, Mohammad-Noori M. Evolu-
tionary solution for the RNA design problem. Bioinformatics.
2014;30(9):1250–8.

 27. Gao JZ, Li LY, Reidys CM. Inverse folding of RNA pseudoknot
structures. Algorithms Mol Biol. 2010;5:1–19.

 28. Garcia-Martin JA, Clote P, Dotu I. RNAifold: a constraint pro-
gramming algorithm for RNA inverse folding and molecular
design. J Bioinform Comput Biol. 2013;11(02):1350001.

 29. Garcia-Martin JA, Dotu I, Clote P. RNAifold 2.0: a web server
and software to design custom and RFAM-based RNA molecules.
Nucleic Acids Res. 2015;43(W1):W513–21.

 30. Griffiths-Jones S, Bateman A, Marshall M, et al. Rfam: an RNA
family database. Nucleic Acids Res. 2003;31(1):439–41.

 31. Hamada M, Kiryu H, Sato K, et al. Prediction of RNA secondary
structure using generalized centroid estimators. Bioinformatics.
2009;25(4):465–73.

 32. Hamming RW. Error detecting and error correcting codes. Bell
Syst Tech J. 1950;29(2):147–60.

 33. He K, Zhang X, Ren S, et al. Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, p. 770–8.

 34. Hochreiter S. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. Int J Uncertain Fuzzi-
ness Knowl-Based Syst. 1998;6(02):107–16.

 35. Hofacker IL. Vienna RNA secondary structure server. Nucleic
Acids Res. 2003;31(13):3429–31.

 36. Hofacker IL, Fontana W, Stadler PF, et al. Fast folding and com-
parison of RNA secondary structures. Monatshefte für Chemie/
Chem Mon. 1994;125(2):167–88.

 37. Hornik K, Stinchcombe M, White H. Multilayer feedfor-
ward networks are universal approximators. Neural Netw.
1989;2(5):359–66.

 38. Ieong S, Kao MY, Lam TW, et al. Predicting RNA secondary
structures with arbitrary pseudoknots by maximizing the number
of stacking pairs. J Comput Biol. 2003;10(6):981–95.

 39. Ioffe S, Szegedy C. Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. In: International
Conference on Machine Learning. PMLR; 2015. p. 448–56.

 40. Isaacs FJ, Dwyer DJ, Ding C, et al. Engineered riboregulators
enable post-transcriptional control of gene expression. Nat Bio-
technol. 2004;22(7):841–7.

 41. Jain S, Tao Y, Schlick T. Inverse folding with RNA-as-graphs
produces a large pool of candidate sequences with target topolo-
gies. J Struct Biol. 2020;209(3): 107438.

 42. Kipf TN, Welling M. Semi-supervised classification with graph
convolutional networks. 2016. arXiv preprint arXiv: 1609. 02907.

 43. Kleinkauf R, Houwaart T, Backofen R, et al. antaRNA-multi-
objective inverse folding of pseudoknot RNA using ant-colony
optimization. BMC Bioinform. 2015;16(1):1–7.

 44. Kleinkauf R, Mann M, Backofen R. antaRNA: ant colony-based
RNA sequence design. Bioinformatics. 2015;31(19):3114–21.

 45. Kocsis L, Szepesvári C. Bandit based Monte-Carlo planning. In:
European Conference on Machine Learning. Springer; 2006. p.
282–93.

 46. Levin A, Lis M, Ponty Y, et al. A global sampling approach to
designing and reengineering RNA secondary structures. Nucleic
Acids Res. 2012;40(20):10041–52.

 47. Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with
deep reinforcement learning. 2015. arXiv preprint arXiv: 1509.
02971.

 48. Lorenz R, Bernhart SH, Hönerzu Siederdissen C, et al. Vien-
naRNA package 2.0. Algorithms Mol Biol. 2011;6:1–14.

 49. Lyngsø RB, Pedersen CN. RNA pseudoknot prediction in energy-
based models. J Comput Biol. 2000;7(3–4):409–27.

 50. MacQueen J, et al. Some methods for classification and analysis
of multivariate observations. In: Proceedings of the Fifth Berkeley

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

SN Computer Science (2024) 5:403 Page 17 of 17 403

SN Computer Science

Symposium on Mathematical Statistics and Probability, Oakland,
CA, USA, 1967, p. 281–97.

 51. Mathews DH, Disney MD, Childs JL, et al. Incorporating chemi-
cal modification constraints into a dynamic programming algo-
rithm for prediction of RNA secondary structure. Proc Natl Acad
Sci. 2004;101(19):7287–92.

 52. Minuesa G, Alsina C, Garcia-Martin JA, et al. MoiRNAifold: a
novel tool for complex in silico RNA design. Nucleic Acids Res.
2021;49(9):4934–43.

 53. Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep
reinforcement learning. 2013. arXiv preprint arXiv: 1312: 5602

 54. Mnih V, Badia AP, Mirza M, et al. Asynchronous methods for
deep reinforcement learning. In: International Conference on
Machine Learning. PMLR; 2016. p. 1928–37.

 55. Nussinov R, Jacobson AB. Fast algorithm for predicting the sec-
ondary structure of single-stranded RNA. Proc Natl Acad Sci.
1980;77(11):6309–13.

 56. Obonyo S, Nicolas J, Owuor D. Designing RNA sequences
through self-play. In: IJCCI; 2022. p. 305–12.

 57. Portela F. An unexpectedly effective Monte Carlo technique for
the RNA inverse folding problem. BioRxiv. 2018:345587.

 58. Quinlan JR. Induction of decision trees. Mach Learn.
1986;1:81–106.

 59. Reinharz V, Ponty Y, Waldispühl J. A weighted sampling algo-
rithm for the design of RNA sequences with targeted second-
ary structure and nucleotide distribution. Bioinformatics.
2013;29(13):i308–15.

 60. Retwitzer MD, Reinharz V, Churkin A, et al. incaRNAfbinv 2.0:
a webserver and software with motif control for fragment-based
design of RNAs. Bioinformatics. 2020;36(9):2920–2.

 61. Rish I, et al. An empirical study of the naive bayes classifier. In:
IJCAI 2001 Workshop on Empirical Methods in Artificial Intel-
ligence, 2001, p. 41–6.

 62. Rosenblatt F. The perceptron, a perceiving and recognizing autom-
aton project para. Cornell Aeronautical Laboratory; 1957.

 63. Rosin CD. Nested rollout policy adaptation for Monte Carlo tree
search. In: IJCAI; 2011. p. 649–4.

 64. Rummery GA, Niranjan M. On-line Q-learning using connec-
tionist systems, vol. 37. Cambridge: University of Cambridge,
Department of Engineering; 1994.

 65. Runge F, Stoll D, Falkner S, et al. Learning to design RNA. 2018.
arXiv preprint arXiv: 1812. 11951.

 66. Saha B. Fast & space-efficient approximations of language edit
distance and RNA folding: an amnesic dynamic programming
approach. In: 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE; 2017. p. 295–306.

 67. Schaffner KF. The Watson–Crick model and reductionism. Br J
Philos Sci. 1969;20(4):325–48.

 68. Schlichtkrull M, Kipf TN, Bloem P, et al. Modeling relational data
with graph convolutional networks. In: The Semantic Web: 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece,
June 3–7, 2018, Proceedings 15. Springer; 2018. p. 593–607.

 69. Schulman J, Levine S, Abbeel P, et al. Trust region policy optimi-
zation. In: International Conference on Machine Learning. PMLR;
2015. p. 1889–97.

 70. Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimi-
zation algorithms. 2017. arXiv preprint arXiv: 1707. 06347.

 71. Silver D, Huang A, Maddison CJ, et al. Mastering the game
of go with deep neural networks and tree search. Nature.
2016;529(7587):484–9.

 72. Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game
of go without human knowledge. Nature. 2017;550(7676):354–9.

 73. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn
Res. 2014;15(1):1929–58.

 74. Sutton RS. Dyna, an integrated architecture for learning, planning,
and reacting. ACM Sigart Bull. 1991;2(4):160–3.

 75. Sutton RS, Barto AG. Reinforcement learning: an introduction.
Cambridge: MIT Press; 2018.

 76. Świechowski M, Godlewski K, Sawicki B, et al. Monte Carlo tree
search: a review of recent modifications and applications. Artif
Intell Rev. 2023;56(3):2497–562.

 77. Taneda A. Multi-objective optimization for RNA design
with multiple target secondary structures. BMC Bioinform.
2015;16(1):1–20.

 78. Trotta E. On the normalization of the minimum free energy of
RNAs by sequence length. PLoS ONE. 2014;9(11): e113380.

 79. Vinyals O, Babuschkin I, Czarnecki WM, et al. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Nature.
2019;575(7782):350–4.

 80. Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells
using the CRISPR-Cas9 system. Science. 2014;343(6166):80–4.

 81. Watford M, Wu G. Protein. Adv Nutr. 2018;9(5):651–3.
 82. Watkins CJ, Dayan P. Q-learning. Mach Learn. 1992;8:279–92.
 83. Weinbrand L, Avihoo A, Barash D. RNAfbinv: an interactive java

application for fragment-based design of RNA sequences. Bioin-
formatics. 2013;29(22):2938–40.

 84. Williams RJ. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach Learn.
1992;8:229–56.

 85. Wold S, Esbensen K, Geladi P. Principal component analysis.
Chemom Intell Lab Syst. 1987;2(1–3):37–52.

 86. Yang X, Yoshizoe K, Taneda A, et al. RNA inverse folding using
Monte Carlo tree search. BMC Bioinform. 2017;18(1):1–12.

 87. Zemora G, Waldsich C. RNA folding in living cells. RNA Biol.
2010;7(6):634–41.

 88. Zuker M, Mathews DH, Turner DH. Algorithms and thermody-
namics for RNA secondary structure prediction: a practical guide.
In: RNA biochemistry and biotechnology. Berlin: Springer; 1999.
p. 11–43.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1312:5602
http://arxiv.org/abs/1812.11951
http://arxiv.org/abs/1707.06347

	Self-Playing RNA Inverse Folding
	Abstract
	Introduction
	Reinforcement Learning
	Related Work
	Methods
	RNA Inverse Folding as a Markov Decision Process
	The SPRNA Algorithmic Design
	Feature Selection
	Local Search (LS) Improvement
	The Value Network
	Datasets

	Experiments
	Discussion
	Future Work
	Conclusion
	Appendix 1 Value Network Training
	Appendix 2 One-Hot Feature Encoding Results
	Appendix 3 Software and Hardware Settings
	Acknowledgements
	References

