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Abstract
Ribonucleic acid (RNA) sequence controls many biological functions in the body of living organisms including protein 
synthesis and gene regulations. The sequence folds according to the low Minimum Free Energy (MFE) which enables it 
to achieve various roles. Given a target RNA structure, an RNA sequence can be designed to fold accordingly in a process 
called RNA Inverse Folding. In this paper, we present an RNA Inverse Folding model that performs a single-step look-ahead 
to select optimal RNA base and base pairs to design RNA sequences. Our proposed model (SPRNA) learns to accurately 
design RNA sequences based on self-improving policy function. The model recorded state-of-the-art results on two test 
datasets and very competitive results on others.

Keywords  RNA sequence design · RNA Inverse Folding · Reinforcement learning · Self-play · Machine learning · Deep 
learning · Self-improving algorithms

Introduction

An RNA molecule is fundamental in the body of living 
organisms. It controls key life-controlling biological pro-
cesses such as the synthesis of proteins [3]. In the the central 
dogma of molecular biology [19], the RNA is the interme-
diate between the deoxyribonucleic Acid (DNA) and pro-
teins. First, the DNA is transcribed to RNA which is then (ii) 
translated to proteins. Proteins are the fundamental building 
blocks of cells and tissues in the body of living organisms 
[19]. Proteins are also pivotal in catalyzing many biochemi-
cal processes in the body of living organisms enabling bio-
logical processes such as cell generation and metabolism 

[81]. Besides protein synthesis, RNA also plays a key role 
in the regulation and expression of genes that dictate the 
phenotypic and genotypic characteristics of living organ-
isms [3].

RNA sequence is composed of four key Nitrogenous 
bases: (i) Adenine, (ii) Guanine (G), (iii) Cytosine and (iv) 
Uracil (U). A study by Schaffner [67] showed that there is 
a pairing between bases A and U, and G and C. These are 
often referred to as the Watson-Crick pairs. Some RNA also 
exhibits base pairing between A and G. In this paper, we will 
refer to AU, UA, GC, CG, GU and UG as base pairs and A, 
G, C and U as bases. The general base and base pair distribu-
tions are A:93%, G:5% C:1% and U:1% and GC/CG:60%, 
AU/UA:33% and GU/UG:7% respectively. The base pair 
distribution can vary in complicated RNA sequences e.g in 
left-most junctions can have GC/CG:82%, AU/UA:11%: and 
GU/UG:7% [57].

In Fig. 1, A is the target structure of the RNA sequence 
while B is a sample RNA sequence that conforms to the 
given target structure. RNA target structure defines the base 
and base pair positions in the RNA sequence. Given a target 
RNA structure, a sequence of bases and base pairs can be 
designed that fold to match it. This process is often referred 
to as RNA sequence design or RNA Inverse Folding. RNA 
sequence that does not fold according to the target structure 
can be dysfunctional and inactive [87].
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Before going deeper into the RNA Inverse Folding 
problem, we present some key concepts related to the 
problem. 

	 (i)	 Base A base is a single nucleotide in the RNA 
sequence. It can be A, G, C or U. A sequence of 
bases composes an RNA sequence e.g. CGG​AAA​
CGA​GGG​AAACC​

	 (ii)	 Base pair In RNA sequence AU, UA, GC, CG, GU 
and UG bonds are referred to as base pairs. For 
instance in Fig. 1B, there are four base pairs: CG, 
GC, GC and CG in the sample sequence CGG​AAA​
CGA​GGG​AAACC.

	 (iii)	 RNA target structure This structure defines the base 
and base pair positions in any RNA sequence. It is 
often represented in Dot Bracket notation e.g. in 
Fig. 1A—((....)).((....))—where the dots represent 
base positions while the matching brackets represent 
base pair positions. Defining RNA target structure 
using dots and matching brackets is a standard nota-
tion generally referred to as Dot Bracket notation. In 
this paper, all the target structures are represented in 
Dot Bracket notation.

	 (iv)	 Fold structure Given a sample RNA sequence such 
as CGG​AAA​CGA​GGG​AAACC, it can be folded to 
generate a fold structure. There are no guarantees 
that the fold structure will match the target structure 
since replacing a single base or base pair can result 
in a different fold structure. Many algorithms that can 
be used to achieve this already exist e.g. Hofacker 
et al. [36], Zuker et al. [88].

	 (v)	 Hamming distance Hamming distance [32] is a 
mathematical formulae used to measure the distance 
between two strings of equal length. Given string 
s1 and s2 of equal length, the hamming distance is 
the number of positions where the two strings dif-
fer. In this context, we evaluate the success of the 
RNA Inverse Folding task by computing the ham-
ming distance between the target and fold structure. 
If the hamming distance is 0 then the RNA Inverse 
Folding task is considered solved. Mathematically it 
is represented as follows: 

 where s1i and s2i are the ith positions in s1 and s2 
respectively. � is the function defined in Eq. (2). 

	 (vi)	 Folding accuracy While the hamming distance 
computes the error value between the target and fold 
structure (the differences), the folding accuracy cor-
responds to the percentage of the matching positions 
between the two structures. It can be derived from 
the hamming distance as shown in Eq. (3). 

 where n is the length of the two strings. Throughout 
this paper, we use a report the folding accuracy as a 
measure of the success of the RNA Inverse Folding 
task denoted as accuracy.

	(vii)	 Correct folding accuracy or expected folding accu-
racy This is the folding accuracy which is equivalent 
to 1.0 e.g. the target and fold structure are identical.

	(viii)	 The GC content The GC content is the percentage of 
G and C bases in the RNA sequence. For instance, in 
the sequence CGG​AAA​CGA​GGG​AAACC, the GC 
content is 10

17
 or 58.82%. Both in vitro and in vivo pro-

cesses are affected by the GC content as the quantity 
determines the stability of the RNA sequence which 
subsequently affects the functional effectiveness [17, 
21, 78].

	 (ix)	 In vitro This is Latin for in glass. In this context, we 
use the term to refer to the experiments carried out 
in a computer or laboratory environment.

	 (x)	 In vivo This is Latin for in life. In this context, we use 
the term to refer to the experiments carried out in a 
living organism.

	 (xi)	 The Minimum Free Energy (MFE) This is the lowest 
conformational energy state of an RNA sequence. 
Methods for computing MFE already exist e.g Turn-

(1)H(s1, s2) =

n
∑

i=1

�(s1i, s2i)

(2)�(s1i, s2i) =

{

1 if s1i ≠ s2i
0 otherwise

(3)Accuracy (s1, s2) = 1 −
H(s1, s2)

n

Fig. 1   A Target—((....)).
((....)).—, B sample RNA—
CGG​AAA​CGA​GGG​AAACC​
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er’s energy model [51], MultiRNAFold [31], Zuck-
er’s energy model [88] and Nussinov’s energy model 
[55]. Similar to the GC content, the MFE also deter-
mines the sequence stability which is a key factor in 
the functional effectiveness of an RNA sequence. In 
this work, we compute the MFE using Zucker’s MFE 
model which is accessible through the Vienna RNA 
software [48].

	(xii)	 Dynamic programming (DP) This is a classical 
approach for solving optimization problems where 
a solution is obtained by breaking the problem into 
smaller sub-problems then combining the solutions 
to the sub-problems to obtain the solution to the 
main problem. DP methods have been used to solve 
RNA Inverse Folding [36] while its formulation also 
underlies the Bellman equations [9]. Reinforcement 
Learning (RL) solves sequential decision-making 
problems by learning the optimal state transition and 
value functions through trial and error. The Bellman 
equations are fundamental in deriving such functions 
[75]. When RNA Inverse Folding is formulated as a 
sequential decision-making problem, RL can be used 
to solve it [24, 65].

	(xiii)	 Design position This is a position in the RNA 
sequence that is yet to be assigned a base or base 
pair in the intermediate RNA sequence s. If the 
position accepts a base pair according to the tar-
get structure, then it is a base pair position (accept 
GC, CG, AU, UA, GU or UG) otherwise, it is a base 
position (accept A, G, C or U). Base pair positions 
are assigned simultaneously. This is summarised as 
a function in (4). 

 where t is the target structure, i is the design position 
and A is the set of possible actions.

	(xiv)	 Deep Neural Network (DNN) Deep Neural Networks 
(DNN) are Artificial Intelligence (AI) methods can 
learn to approximate any function [37]. They are 

(4)

A(t, i) =

{

{A,G,C,U} if ti = .

{GC,CG,AU,UA,GU,UG} if ti = (

commonly used to find a mapping function from 
input space X to output space y (supervised learn-
ing) or approximate the distribution and patterns of 
the input space X (unsupervised learning). In design, 
DNNs are composed of artificial neurons where each 
neuron is a mathematical function that computes the 
weighted sum of the input data and then applies an 
activation function—this simulates the activation of 
biological neurons in the brain. In this paper, we used 
a DNN to evaluate RNA Inverse Folding states and 
select the optimal action (base or base pair) leading 
to the best cumulative hamming distance (reward). 
The network is then trained by automatically labeling 
the states with the reward at the end of a design task 
in a self-improving fashion (self-play).

	(xv)	 Value and policy functions The value function is a 
function that evaluates the quality of a state accord-
ing to a scalar variable. For instance, in RNA Inverse 
Folding, a value of 1.0 corresponds to the correct 
folding accuracy while a value of 0.0 otherwise. A 
policy ( � ) function on the other hand is a function 
that selects the optimal action (base or base pair) in 
a given state. The policy can be generated from the 
value function by selecting the action with the highest 
value in any given state e.g. �(s) = argmaxa Q�(s, a) 
where � is the policy, s is the state, a is the action and 
Q is the value function parameterized by DNN. For 
simpler problems, the Q function can be represented 
as a table where each row corresponds to a state and 
each column corresponds to an action.

While the primary goal in RNA Inverse Folding is to design 
an RNA sequence that folds according to the given target 
structure, it is also imperative to design a sequence contain-
ing desired GC content and Minimum Free Energy (MFE) 
values. The latter and former are key in RNA applications 
involving in vitro and in vivo experiments. Accordingly, as 
previously mentioned, they control the stability of the RNA 
sequence which translates to the effectiveness of the RNA.

We show the RNA Inverse Folding pipeline in Fig. 2, 
A. is the target structure (in Dot Bracket notation) B is 

Fig. 2   RNA Inverse Folding pipeline. A The target structure, B the 
designed sequence and C the fold structure. The fold structure must 
conform to the target structure in any successful RNA inverse folding 

task. The paired and unpaired design positions in the target and fold 
match then the RNA Inverse Folding task is considered solved
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the designed RNA sequence following base pair and base 
assignments while C is the fold structure obtained from 
folding the designed RNA sequence. According to the tar-
get structure, the position (1, 11) expects a base pair while 
12 is a base. These have been assigned accordingly in the 
designed RNA sequence e.g. GC and U respectively. This 
procedure is repeated to obtain the designed RNA sequence. 
To validate if the fold structure matches the target structure, 
the paired and unpaired positions in the target structure are 
compared to those in the fold structure. If the hamming dis-
tance between the two is 0 then the RNA design task is con-
sidered solved. Given an RNA target structure, many pos-
sible RNA sequences can be designed to fold accordingly.

The success of RNA Inverse Folding can impact biologi-
cal research and application including drug design, nano-
technology, precision medicine, genetic engineering, syn-
thetic biology, bioengineering and material science [12, 16, 
27]. These technologies are key in handling some global 
challenges such as the rapid development of vaccines and 
drugs, the development of technologies to address climate 
change and the growing population.

RNA Inverse Folding is one of the challenging tasks in 
structural biology. The design of simple RNA sequences can 
be solved using dynamic programming methods in O(n3) 
time [55, 88]. In addition, some methods have reported 
deterministic runtime [11] while others polynomial [66]. 
The upper bound is NP-hard however [2, 38, 49]. NP-hard 
problems are those that cannot be solved in polynomial time 
complexity.

Several RNA Inverse Folding methods have been pro-
posed in the past. These include dynamic programming 
methods [36], constraint programming [28, 29, 52], sam-
pling methods [46, 59], evolutionary algorithms [26], 
genetic algorithms [77], Monte Carlo Tree Search [86], 
nested Monte Carlo Tree Search [57], ant-colony optimiza-
tion [43, 44] and RL [24, 65].

While these methods have recorded very promising 
results, some of them are limited by their design choice. 
Dynamic programming methods are computationally expen-
sive and can only be used to solve simple RNA Inverse Fold-
ing tasks since the whole search space is explored. Sam-
pling-based methods can generalize well, however, they 
are limited by the exploration of the search space. While 
the evolutionary and genetic algorithms are suited to solv-
ing many optimization problems, they are limited by some 
design choices such as the fitness function and search space 
exploration leading to local optima convergence. MCTS-
based methods are strong solvers. They can balance the 
exploration and exploitation of upper confidence bound 
(UCB) [45] is used as a tree policy. These methods, how-
ever, are computationally expensive and other variations 
such as nested MCTS [57] include expert heuristics which 
can be difficult to scale. RL-based methods are also strong 

solvers with the ability to balance exploitation and explora-
tion. While they are prone to convergence issues, some novel 
design choices can be used to mitigate such issues.

In this paper, we present an RL-based RNA Inverse 
Folding model called Self-Playing RNA Inverse Folding 
(SPRNA). The model learns to design RNA sequences that 
fold according to the given target structure by performing 
a one-step look-ahead using DNN as a value function. The 
value function evaluates the base and base pairs at any given 
state and selects the optimal action (base or base pair) lead-
ing to the best cumulative reward (folding accuracy). The 
network is trained in a self-play fashion where the states 
that lead to the expected folding accuracy are automatically 
labeled with a positive reward and a negative otherwise. 
Deriving the policy from the value function is achieved by 
selecting the action with the highest value in the current 
state. Accordingly, SPRNA learns to design RNA sequences 
that fold according to the given target structure without any 
human feedback or hand-engineered folding rules.

We present our contributions as follows:

•	 RNA Inverse Folding algorithm We present an RNA 
Inverse Folding model that learns to improve by itself to 
design RNA sequences that accurately fold according to 
the given target. The model learns by self-play whereby 
the observations that lead to correct folding are auto-
matically labeled with a positive reward and a negative 
otherwise. The algorithm is composed of two phases: (i) 
the sampling phase where the state observations are col-
lected and (ii) the learning phase where the observations 
are used to train the value function to improve the policy.

•	 Feature coding scheme This is the method used to encode 
states during the RNA Inverse Folding process. In this 
work, we present a new feature coding scheme for the 
RNA Inverse Folding states. It is composed of a sequence 
of binary codes representing different states controlled by 
a feature parameter.

•	 Local search improvement We proposed a local search 
improvement method for the candidate solutions that 
do not have expected fold accuracy. Accordingly, the 
base pairs are broken or formed in the designed RNA 
sequence according to the target structure constraints. 
This idea is inspired by the existing methods, however, 
in our case it is only performed if the hamming distance 
between the target and fold structure is less than some 
threshold value �.

While this paper builds on the work of Obonyo et al. [56] 
there are several key differences as outlined below: 

	 (i)	 The value network architecture RNASP the value 
network was composed of two layers of CONV → 
BN → ReLU followed by an Adaptive Pooling layer, 
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an FC layer, a Dropout layer and two FC layers. In 
this paper, the network design follows CONV→ 
NORM→RELU design with skip connection [33]. 
This design pipeline is repeated four times followed 
by one Adaptive Pooling and FC layer, one Dropout 
layer [73], and two FC layers. While RNASP was 
normalized using BN [39] the network normalization 
in this paper was achieved using Layer Normalization 
(NORM) [8]. In addition, the network in this paper is 
deeper than RNASP.

	 (ii)	 Feature selection The feature selection in RNASP 
was composed of binary codes that represent the 
known and unknown states. In this paper, a similar 
coding scheme was used, however, a feature control 
parameter is introduced to allow robust state feature 
representation.

	 (iii)	 Test data set RNASP was trained on 65K instances 
prepared according to Runge et al. [65]. It was then 
tested on datasets used by Runge et al. [65], Taneda 
[77] and Kleinkauf et al. [44] models. In this paper, 
the proposed model was trained and tested on similar 
datasets, however, during testing datasets A and B 
(test and train set from Kleinkauf et al. [44]) were 
combined into one test set. In addition, the proposed 
model is tested on a new test set to validate its per-
formance. The dataset was prepared according to 
Anderson-Lee et al. [5].

	 (iv)	 Comparative models incaRNAfbinv [60] is one of the 
comparative models presented in Obonyo et al. [56]. 
The model did not record competitive results, thus, 
its results were not included in this paper. Three new 
comparative models, however, have been introduced 
in this paper including NEMO [57], MCTS-RNA 
[86] and LEARNA [65]. The first model is a nested 
Monte Carlo Tree (NMCTS) [13] search algorithm, 
the second is based on classical Monte Carlo Tree 
Search (MCTS) with Upper Confidence Boundary 
(UCB) [45] while the last is based on the Proximal 
Policy gradient algorithm [70].

The rest of this paper is organized as follows “Reinforce-
ment Learning” covers Reinforcement Learning and 
related concepts key to this work, “Related Work” pre-
sents the related work, “Methods” introduce the meth-
ods used in this work including the algorithmic design, 
model testing and evaluation, “Experiments” includes 
the experiments carried out in this work as well as the 
results, “Discussion” discusses the obtained results while 
“Future Work” composes the future research perspectives 
and conclusion in “Conclusion”.

Reinforcement Learning

Machine Learning (ML) is a branch of Artificial Intelligence 
(AI) that involves designing algorithms that learn from data 
and improve over time. There are two main types of ML: (i) 
supervised and (ii) unsupervised ML. In supervised ML, the 
algorithms learn from labeled data where the objective is to 
learn a mapping function f from the input to the output e.g. 
y = f (X) where X is the input and y is the output. Importantly, 
each sample si ∈ X is assumed to be independent and identi-
cally distributed (i.i.d) e.g. a given sample si is independent of 
the other samples sj ∈ X where j ≠ i.

Several supervised ML algorithms exist such as Support 
Vector Machines (SVM) [18], Decision Trees [58], Random 
Forests [10], Neural Networks Rosenblatt [62] and Naive 
Bayes [61]. The algorithms can be applied to solve both the 
regression—where the output is a continuous value—and clas-
sification—where the output is a discrete value—problems. 
In unsupervised ML there are no labels or targets associated 
with each sample and the goal is to find underlying patterns 
in the data e.g. clusters which can be used to group similar 
samples. Unsupervised ML algorithms include K-means [50] 
and Principal Component Analysis (PCA) [85]. By extension, 
unsupervised ML algorithms can be used as a preprocessing 
step in supervised ML problems e.g. to reduce the dimension-
ality of or to identify and remove repetitive samples in the data.

Reinforcement Learning (RL) is a variation of super-
vised ML that involves learning by trial and error. In RL the 
labels are not explicitly provided, instead, the agent learns by 
interacting with the environment and collecting positive and 
negative rewards. The actions that lead to positive rewards 
are reinforced while those that lead to undesirable rewards 
are discouraged. RL agent can be formally represented as a 
Markov Decision Process composed of a tuple (S,A,P,R, �) . 
S is the state space, A is the set of actions to be taken at any 
given step, P(s, a, s�) is the transition function that encodes 
the probability of moving to the next state s� ∈ S given the 
current state s ∈ S and action a ∈ A , R(s, a) is the reward 
function that defines the reward obtained by the agent upon 
taking an action a ∈ A in a given state s ∈ S . � is the control 
parameter referred to as the discount factor which deter-
mines the relative importance of future rewards. A policy �
(s, a) defines how in any given state s ∈ S the agent selects 
an action a ∈ A . The goal of an RL agent is to learn the 
optimal policy �∗ that maximizes the expected cumulative 
reward. This can be formally expressed as a value function 
V�(s) under policy � as shown in Eq. (5).

where �� is the expectation of the reward obtained by the 
agent over episodes (trajectories) following policy � and 

(5)V�(s) = ��

[

∞
∑

k=0

�kr(st, at) ∣ s0 = st

]
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r(st, at) is the reward obtained by the agent at time t when it 
is in state st and takes action at.

The value function can also be represented as a state-
action function Q�(s, a) where � is the policy, s is the state 
and a is the action as shown in Eq. (6).

The optimal policy �∗ is the policy that maximizes the value 
function V�(s) or the state-action function Q�(s, a) as shown 
in Eqs. (7) and (8) respectively.

In RL the discount factor determines how much the current 
reward is weighted toward future rewards. The inclusion of 
the discount factor in the RL target underscores the differ-
ence between RL and classical supervised ML. In addition to 
this, samples in RL are not i.i.d. e.g. the current state at time 
t is dependent on the previous state at time t − 1.

There are four variations of RL algorithms (i) value-
based, (ii) policy gradient, (iii) actor-critic and (iv) model-
based. In value-based RL, the agent learns the state value 
or action-value function and derives the policy from the 
value function e.g. Q-learning [82] and SARSA [64]. In 
policy gradient RL, the agent learns the policy directly 
(without calculating the state or action value) according 
to the RL objective functions in Eqs. (5) or (6) e.g. REIN-
FORCE [84]. Policy gradient methods are prone to high 
variance which makes learning and generalization hard. To 
address this problem, actor-critic (AC) method proposed a 
learning objective that includes both the policy and value 
(or advantage) functions. In AC, the actor selects the 
action while the critic evaluates the quality of the action 
relative to others—the advantage function. The advantage 
function encourages the selection of actions that are bet-
ter than the average action in the current state while also 
controlling the variance of the reward estimates. Common 
actor-critic methods include A2C and A3C [54], Proxi-
mal Policy Optimization (PPO) [70], Deep Deterministic 
Policy Gradient (DDPG) [47] and Trust Region Policy 
Optimization (TRPO) [69]. In model-based the RL agent 
learns the model of the environment which then informs 
the policy [15, 20, 74].

While in simpler problems policy functions can be rep-
resented as a table, in more complex problems where there 
is a large state space e.g. in games such as Go and Chess 

(6)Q�(s, a) = ��

[

∞
∑

k=0

�kr(st, at) ∣ s0 = st, a0 = at

]

(7)�∗ = argmax
�

V�(s)

(8)�∗ = argmax
�

Q�(s, a)

and computational biology problems such as RNA Inverse 
Folding and assembly of DNA sequences, the value func-
tions are parameterized as supervised ML models such as 
neural networks [6, 53]. Using DNN as a policy is gener-
ally referred to as Deep Reinforcement Learning (DRL) 
in the RL literature. DRL has been successful in solving 
complex problems such as Go [71], Chess [72], StarCraft 
II [79], Atari games [53] and computational biology prob-
lems such as RNA Inverse Folding [24, 65]. Owing to the 
ability of DNN to approximate represent any function [37] 
they are widely used in DRL.

While RL algorithms alleviate the need for labeling 
data—a constraint that can be expensive and time-consum-
ing—they are prone to convergence issues. They require 
long hours of training which can be computationally expen-
sive. In addition, they are sensitive to the choice of hyper-
parameters e.g. learning rate, discount factor, optimization 
algorithm, and network architecture.

Related Work

Several RNA Inverse Folding models have been proposed 
in the past decades. The models include concepts and ideas 
borrowed from dynamic programming (DP), constraint 
programming (CP), and Reinforcement Learning (RL): 
value-based and policy gradient methods, graphical models, 
probabilistic models, stochastic optimization, physics-based 
and energy optimization models, genetic and evolutionary 
algorithms, Monte Carlo Tree Search (MCTS), and a com-
bination of MCTS and machine learning (ML).

Eastman et al. [24] proposed an RL-based model to solve 
the RNA Inverse Folding problem. The authors used DNN 
with residual connections as value functions.

Their method recorded competitive results with limited 
comparison to other methods and datasets. In, Runge et al. 
[65] the authors proposed a proximal policy gradient algo-
rithm that learns the policy based on neural network gradi-
ent optimization. The output of the network is a probability 
distribution over the action base or base pairs (4) with states 
encoded using one-hot encoding. The model was trained 
and tested on the 65K instances obtained from RFAM [30]. 
On average it recorded over 0.9 accuracy on the test set, 
however, the same was not recorded on a different test set 
such as Anderson-Lee et al. [5] and Kleinkauf et al. [43, 44].

MCTS is any-time optimization algorithm that has been 
applied to solve complex problems in games and planning 
problems [76]. MCTS has also been applied to RNA Inverse 
Folding problem recording very competitive and strong 
results compared to several baseline models. The MCTS 
algorithm is composed of four phases: (i) selection, (ii) 
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expansion, (iii) simulation and (iv) backpropagation. In the 
selection phase, the node in the tree with the highest UCB 
value is selected. In the expansion phase, the selected node 
is expanded by adding a new node to the tree. In the simula-
tion phase, valid actions are selected randomly and applied 
until the terminal state is reached. In the backpropagation 
phase, the reward obtained in the simulation phase is back-
propagated to update the Q values of the nodes in the tree. In 
RNA Inverse Folding, the reward is the folding accuracy or 
hamming distance while every node represents a valid base 
or base pair assigned to a given design position.

Recently, MCTS-based algorithms have become more 
attractive due to three key reasons: (i) the ability to effec-
tively sample large search spaces, and (ii) MCTS is an any-
time algorithm—MCTS can be terminated at any time while 
collecting the existing results, (iii) convenient combination 
with ML—since Silver et al. [72] the simulation phase of the 
MCTS increasingly being replaced with DNN prediction.

Several MCTS algorithms have been proposed for solving 
RNA Inverse Folding. The MCTS-based model proposed by 
Yang et al. [86] selects the best action according to the UCB 
[45] formulae while balancing the exploration and exploita-
tion using a set exploration-exploitation parameter. If the 
fold structure does not match the target structure then a local 
search is performed to break incorrect base pairs and form 
the missing ones according to the target structure constraints. 
Portela [57] also proposed a nested MCTS solver which is 
guided based on strong hand-engineered rules in the loops, 
left and right junctions. Generally, in nested MCTS the solu-
tions in the lower recursive level inform upper level(s) [63]. 
Nested MCTS methods have been more effective in solv-
ing some hard optimization problems in games and com-
putational biology [13, 63] compared to classical MCTS 
at a computational cost. In another work, Cazenave and 
Fournier [14] presented an MCTS-based solver composed 
of DNN policy evaluation and general rollout adaptation 

e.g. combination of MCTS with DNN. MCTS solvers are 
strong, however, are computationally expensive and can be 
sensitive to the initial parameter and hyperparameter values 
of the policy networks.

Garcia-Martin et al. [28] proposed constraint program-
ming model (CP). The constraints were defined according 
to the expected MFE values, GC content and base pair dis-
tributions. A model with a similar algorithmic design was 
also proposed by Garcia-Martin et al. [29] which could solve 
complex RNA Inverse folding tasks. CP-based algorithms 
have strong theoretical foundations and can be used to solve 
complex problems, however, in the context of RNA Inverse 
Folding, they are limited by the set of constraints that must 
be specified prior to the design process. Such specifica-
tions can be difficult in a large-scale context or complex 
to adapt to new problems. In another study, Minuesa et al. 
[52] presented a CP model that included stronger heuristics 
and restart strategies. These restart strategies could guide 
the search to the global optimum. According to the authors, 
the model could design RNA sequences that are usable 
in in vitro as well as in vivo. Despite this argument, this 
method also inherits the limitations of CP-based methods 
previously mentioned.

Besides the above-mentioned RNA Inverse Folding meth-
ods, other researchers have also proposed different design 
approaches including weighted sampling approaches [59], 
genetic algorithms [4, 22, 41, 77], adaptive sampling with 
optional search improvement [46, 59], dynamic program-
ming [36], evolutionary algorithms with heuristics [25, 26], 
ant colony optimization [43, 44] and graphical and shape-
aware solvers [7, 23, 41, 83].

Overall, the existing RNA Inverse Folding methods have 
recorded very promising results. However, in the design 
of a new method, it is imperative to design algorithms that 
are not only accurate and generate RNA sequences with 
expected MFE and GC content but also loosely dependent 
on human supervision (e.g. can automatically self-improve). 

Fig. 3   SPRNA episode over 
a sample target structure ∙
(∙ ∙)∙ , each state value can be 
known unpaired, known paired, 
unknown paired or unknown 
unpaired. The designed 
sequence is folded to generate 
the fold structure which is then 
compared to the target
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The latter is important in the design of RNA Inverse Fold-
ing methods as it underlies the scale and cost of the RNA 
Inverse Folding.

Methods

RNA Inverse Folding as a Markov Decision Process

RNA Inverse Folding can be formulated as a Markov Deci-
sion Process (MDP) according to {A,S,P,R, �} . A is the 
set of actions that can be taken in any state—{A,C,U,G, } 
for base design positions and {AU,UA,GC,CG,GU,UG} 
for base pairs, S is the state composed of a binary sequence 
of length N where the known and unknown states are coded 
according to Table 1 in Obonyo et al. [56]. In this paper, a 
state is known if the design position is assigned a base or 
base pair and unknown otherwise. P is a deterministic tran-
sition function that models state change from st to st+1 with 
a probability of 1. R is the reward which is 0 in all states 
except the terminal state where it is + 1 if the hamming 

distance between the target and fold structure is 0 and − 1 
otherwise. The discount factor � is set to 1 so that the agent 
only the value of the immediate reward.

The SPRNA Algorithmic Design

The SPRNA requires no expert knowledge to learn except the 
rules of RNA Inverse Folding. Given a set of valid actions 
and the coded state st , a one-step look-ahead state evalua-
tion is performed using the value network, v� , to select the 
optimal action from a set of valid actions At = {A,C,U,G, } 
for base design positions and {AU,UA,GC,CG,GU,UG} for 
base pairs. The value network v� returns the the value associ-
ated with each valid action. The optimal action is selected 
according to the epsilon-greedy ( �greedy) policy to allow 
for the balancing of exploration and exploitation e.g. with 
probability � the action is selected randomly and with prob-
ability 1 − � the action with the the highest value is selected. 
The pseudocode of the SPRNA value algorithm is presented 
in Algorithm 1.

Algorithm 1   Value algorithm

1: Input: st, At, ε, vθ, δ
2: Output: at
3: V ← vθ(st,At) {At is bases or base pairs}
4: ai ← εgreedy(ε, V )
5: at ← At[ai]
6: return at

Algorithm 2   �greedy function

1: Input: ε, V {V is the value of each action}
2: Output: at
3: random ← random(0, 1)
4: if random < ε then
5: at ← random(0, length(V )) {Exploration: select a random action}
6: else
7: at ← argmaxa∈At V {Exploitation: select the best action}
8: end if
9: return at
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Algorithm 3   The self-play algorithm. Execute a single episode

1: Input: vθ, B, target, ε, δ
2: Output: B
3: seq ← target {Initialize the fold as the target}
4: for all i ∈ {1, . . . , length(target)} do
5: At ← getActions(target[i])
6: at ← value(st, At, ε, vθ)
7: seq[i] ← applyAction(at)
8: st ← encodeState(seq)
9: B ← B ∪ {st} {Save the state in the replay buffer}

10: end for
11: seq ← LS(seq, target, δ) {Local search. Details in Section 4.4}
12: foldstruct ← Fold(seq) {Generate the fold structure}
13: r ← H(target, foldstruct) {H is the hamming distance function (Equation 3)}
14: if r = 0 then
15: r ← 1
16: else
17: r ← −1
18: end if
19: for all i ← 1 to length(B) do
20: B[i] ← B[i] ∪ {r} {Label each state with the reward}
21: end for
22: return B

Initially, � is set to 0.1 and then decays exponentially as a 
function of SPRNA training epochs. The self-play algorithm 
accepts the target and value network as input and runs a sin-
gle episode over the paired and unpaired design positions. 
Every design position is encoded, and then optimal action is 
obtained by calling the value Algorithm 1. The action is then 
applied to the current state to obtain the next state which is 
saved in the replay buffer B . At the end of the episode, each 
state in the replay buffer is labeled with a + 1 reward if the 
hamming distance between the target and fold structure is 0 
and − 1 otherwise.

As an example, a sample SPRNA episode is shown in 
Fig. 3. Initially, the fold sequence is initialized as the target 
sequence. In every step of the episode, the state is encoded 
and passed to the value network to obtain the optimal action 
(base or base pair) which is then applied to the current state 
to obtain the next state.

Feature Selection

The self-play Algorithm 3 returns a replay buffer B com-
posed of states and their corresponding labels. The states are 
the features while the labels are the targets. These are used to 
train the value network v� by minimizing the mean squared 
error (MSE) (shown in Eq. ) loss function.

The replay buffer size is limited to 20K as such the oldest 
samples are removed from the buffer. The generation and 
update of the training samples and training of the value net-
work are automated e.g. there is no need for human supervi-
sion. AI for games literature refers to this as self-play [72] 
where the agent learns to improve by itself by collecting 
observations and improving the policy function. Self-play 

(9)L(r, s) =
1

N

N
∑

i=1

(ri − v�(si))
2

Fig. 4   SPRNA value network. CONV convolutional layer, NORM layer normalization, ReLU rectified linear units, FC fully connected layer, 
POOL adaptive pooling layer. s

t
 is the is the encoded state and the network outputs a scalar reward value
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has been successful in solving complex problems such as 
Chess [72] and GO [71].

State representation (line 8 in Algorithm 3) is a key com-
ponent of any RL algorithm. In this paper, we adopt the 
state representation proposed in Obonyo et al. [56] which is 
composed of encoding states as a sequence of binary codes 
for the known and unknown states. Bases {A, G, U, C} are 
encoded using 0000, 0001, 0010, 0100, and 1000 binary 
codes respectively while base pairs {GC, CG, AU, UA, 
UG, GU} are encoded using 0010, 0111, 0101,1000,1001, 
0110 binary codes respectively. We refer to the former as 
known unpaired and the latter as known paired. The match-
ing parenthesis of Dot Bracket (unknown paired) is encoded 
using 1010 and the dots (unknown unpaired) using 1011. We 
experimented with one-hot encoding, however, it performed 
worse than our proposed encoding scheme.

As an example, given a target structure ∙(∙ ∙)∙ , the move 
positions are defined by { 1, (2, 5), 3, 4, 6 } . Given that the 
move position is 1 and the value function returns A as the 
optimal action, state st+1 becomes A( ∙ ∙)∙ . Similarly, after 
a one-time step, the state st+2 becomes AG∙ ∙C∙ with (2, 5) 
as the move position and GC as the optimal action. Impor-
tantly, the base pairs are assigned simultaneously and the 
move positions are indexed in the intermediate sequence 
(seq) and then encoded according to the procedure discussed 
in the preceding paragraph before being passed to the value 
function. This process is repeated until all the base and base 
pair positions are assigned.

In this paper, we also introduce a feature control param-
eter W to allow for richer state feature representation by 
determining the overlap between the move positions. For 
example, based on the ∙(∙ ∙)∙ example, if move locations 
are defined by the set {(1), (2, 5), (4), (3), (6)} then W is 1. 
If W = 2, then the set defining move locations becomes {
(1, (2, 5)), ((2, 5), 4), (4, 3), (3, 6)} and {(1, (2, 5), 4), ((2, 
5), 4, 3), (4, 3, 6)} if W = 3. Thus in the latter and former 
move position instances, there is an overlap between the 
design positions. This permeates robust state feature rep-
resentation as our experimentation with one-hot encoding 
performed worse. In the experiments, W was varied between 
1 to 6. In Obonyo et al. [56], the value was set to 1 through-
out the experiments. its value was set to 1 throughout the 
experiments.

Local Search (LS) Improvement

If the hamming distance between the target and fold struc-
ture is greater than 0, and the distance is below or equal to 
the threshold � , then a local search procedure is performed 
to improve the solution. This procedure is key in instances 
where the target structure can be obtained by performing a 
few mutations on the designed RNA sequence. In the experi-
ments, � was set to 0.1. The local search procedure is shown 
in Algorithm 4. The procedure is similar to the one proposed 
in Yang et al. [86], however, in this paper, it is constrained 
by the hamming distance threshold �.
Algorithm 4   LS function

1: Input: seq, target, δ
2: Output: seq
3: foldstruct ← Fold(seq)
4: hamming distance ← H(target, foldstruct)
5: if hamming distance ≤ δ and hamming distance > 0 then
6: seq ← random mutation(seq)
7: end if
8: return seq
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The Value Network

The value network design is shown in Fig. 4. The coded 
state ( st ) is fed into the network to generate a scalar reward 
signal. The network design is composed of Convolutional, 
Normalization, Rectified Linear Units, Fully connected 
and Adaptive Pooling layers. The network architecture also 
includes skip (residual) connections which allow for training 
deeper network models with no performance degradation 
[33] as training DNN with many layers generally leads to 
worse performance due to the vanishing gradient problem 
[34]. The Layer Norm (LN) [8] enables the normalization 
of activations across the input features dimension enabling 
faster training and reducing the model overfitting. This is as 
opposed to Batch Norm (BN) [39] used in Obonyo et al. [56] 
which normalizes the activations across the batch dimen-
sion. There are three key differences between this value net-
work and Obonyo et al. [56]. The network is training based 
on the sample output from the self-play Algorithm 3. This 

is achieved by running the self-play algorithm over several 
training target structures, updating the training samples then 
training the value network. This procedure is concretely 
shown in Algorithm 5. The full network training such as 
details such as the parameter and hyperparameter configura-
tions is shown in Appendix 1.

Table 1   Test dataset statistics

Name Total sequences Source Train Average length

A & B 146 Kleinkauf et al. 
[44]

X 103.24

C 29 Taneda [77] X 191.87
D 100 Runge et al. [65] X 247.87
E 65K Runge et al. [65] ✓ 243.70
F 100 Anderson-Lee 

et al. [5]
X 159.01

Table 2   SPRNA results on A & B

The bold shows the best score entry

W Correct/146 MFE GC

1 100 − 61.20 49.21
2 105 − 62.89 52.16
3 110 − 62.76 53.02
4 123 − 62.19 56.55
5 114 − 64.63 52.91
6 113 − 61.10 51.85

Table 3   SPRNA results on C

The bold shows the best score 
entry

W Correct/29 MFE GC

1 18 − 58.22 54.16
2 17 − 62.18 51.62
3 19 − 60.57 53.14
4 24 − 63.35 55.62
5 20 − 49.83 46.45
6 21 − 60.09 53.36

Table 4   SPRNA results on D

The bold shows the best score entry

W Correct/100 MFE GC

1 80 − 40.21 58.08
2 85 − 47.38 56.74
3 90 − 58.90 57.26
4 92 − 59.92 51.64
5 88 − 60.28 58.23
6 89 − 52.45 57.68

Table 5   SPRNA results on F

The bold shows the best score entry

W Correct/100 MFE GC

1 50 − 58.96 49.15
2 52 − 61.76 49.15
3 56 − 61.88 47.64
4 69 − 60.47 51.82
5 59 − 55.62 50.33
6 58 − 54.59 59.09

Table 6   Folding accuracy 
comparative analysis. SPRNA 
entry is based on W = 4

The bold shows the best score entry

Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] 87 100 102 100 85 105 110
C [/29] 20 24 23 18 11 21 24
D [/100] 79 85 91 80 75 88 92
F [/100] 55 95 70 71 52 68 69
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Algorithm 5   SPRNA training algorithm
1: initialize network vθ, expoloration parameter ε,batch size b, epochs, δ
2: targets ← getTargets()
3: train samples ← ∅
4: for epoch ← 1 to epochs do
5: for all i ∈ {1, . . . , length(targets)} do
6: B ← self-play(vθ, targets[i], ε, δ)
7: train samples ← train samples ∪ B
8: if i mod b = 0 then
9: samples ← sample(targets, b)

10: vθ ← train(vθ, samples)
11: end if
12: end for
13: end for

Table 7   GC content 
comparative analysis

Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] 48.21 50.23 51.22 49.45 50.76 49.82 53.58
C [/29] 48.00 52.12 50.33 45.89 52.09 50.01 52.83
D [/100] 51.31 52.85 51.03 53.76 48.40 51.23 56.34
F [/100] 52.05 53.01 54.50 49.94 50.12 53.20 54.26
Average 49.89 52.05 51.77 49.76 50.34 51.10 54.25

Table 8   MFE comparative 
analysis

Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] − 28.23 − 30.35 − 35.45 − 53.50 − 49.62 − 31.05 − 50.01
C [/29] − 26.08 − 29.98 − 40.23 − 57.47 − 59.64 − 37.20 − 56.44
D [/100] − 28.15 − 31.01 − 45.23 − 51.10 − 47.48 − 47.34 − 57.34
F [/100] − 25.33 − 33.22 − 42.55 − 50.03 − 54.33 − 51.12 − 48.33
Average − 26.95 − 31.14 − 40.87 − 53.09 − 52.77 − 41.68 − 53.03

Table 9   Average time taken Data Inv. NEMO MCTS iFold MODENA LEARNA SPRNA

A & B [/146] 1.17 2.17 5.17 1.07 9.25 8.23 3.09
C [/29] 2.12 2.12 6.98 2.50 14.99 17.70 3.30
D [/100] 1.16 3.50 4.02 3.53 41.78 10.01 2.58
F [/100] 10.22 5.09 8.98 10.01 50.23 25.00 4.10
Average 3.67 3.22 6.29 4.28 29.06 15.24 3.26

Fig. 5   Sample correct fold from 
A & B
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Some key differences between the value network in 
SPRNA and Obonyo et al. [56] are (i) the SPRNA uses Layer 
Norm (LN) [8] while Obonyo et al. [56] uses Batch Norm 
(BN) [39], (ii) the SPRNA uses skip connections [33] while 
Obonyo et al. [56] does not, and (iii) the SPRNA has 16 lay-
ers while Obonyo et al. [56] has 11 layers.

Datasets

SPRNA was trained on a dataset containing 65K RNA tar-
get sequences obtained from RFAM [30] and compiled by 
Runge et al. [65]. Following the training, it was tested on 
four benchmark datasets. Contrary to Obonyo et al. [56], in 
this paper, the training and testing samples from Kleinkauf 
et al. [44] are combined leading to a total of 146 sample 
samples. The RFAM dataset is generally used to benchmark 
RNA Inverse Folding methods and it is one of the largest 
datasets and commonly used by several methods [65, 77]. 
Also, the SPRNA was tested on a new benchmark test data-
set prepared according to Anderson-Lee et al. [5]. It con-
tains a total of 100 sequences including simple as well as 
complex samples. This dataset was prepared to allow testing 
RNA Inverse Folding methods on new complex target struc-
tures. A summary of all the training and testing datasets is 

presented in Table 1. The data name entry corresponds to 
the name of the authors.

Experiments

After training, the SPRNA model was tested and its per-
formance was compared to some existing baselines. The 
baselines were selected based on two key criteria: (i) the 
methodology used to solve the RNA Inverse Folding prob-
lem: e.g. tree search, RL, etc., and (ii) their performance on 
the benchmark datasets: the existing strong baselines were 
selected. The baselines included (i) MODENA [77]: evo-
lutionary algorithm, (ii) NEMO [57]: nested MCTS, (iii) 
RNAiFold [28]: constraint programming, (iv) RNAInverse 
[35]: dynamic programming, (v) LEARNA [65]: policy gra-
dient and (vi) MCTS-RNA [86]: MCTS. The abbreviations 
are as follows: RNAiFold is abbreviated as iFold, RNAIn-
verse: Inv., and MCTS-RNA: MCTS. The MFE values were 
computed using the Vienna software [48]. The SPRNA 
results with different W values are presented in Tables 2, 
3, 4 and 5. The results of the best SPRNA model according 
to W compared some existing baselines are presented in 
Tables 6, 7, 8 and 9.

Fig. 6   Sample correct fold 
from C

Fig. 7   Sample correct fold 
from D
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Discussion

In this section, we discuss the SPRNA results according to 
the control parameter W , folding accuracy, MFE and GC 
and the time taken during the design process. We also dis-
cuss some complexity associated with the test datasets and 
the SPRNA model.

On the control parameter W . The W the parameter controls 
the feature representation of the state (discussed in methods 
”Feature Selection”). The value was varied between 1 to 6 with 
W = 4 recording folding accuracy of 123/146 (84.24%), 24/29 
(82.75%), 92/100 (92%) and 69/100 (69%) on test datasets A 
&B, C, D and F, respectively. We compared these results in 
a standard encoding scheme such as one-hot encoding and 
obtained folding accuracy of 90/146 (61.64%), 19/29 (65.51%), 
85/100 (85%) and 59/100 (59%) on test datasets A &B, C, D 
and F respectively. This corresponds to a 22.6, 17.24, 7 and 10% 
improvement on test datasets A &B, C, D and F, respectively. 
This also shows that our feature representation was richer than 
the one-hot encoding.

On folding accuracy We benchmarked SPRNA ( W = 4) 
with existing baselines on test datasets A &B, C, D and 
F. SPRNA recorded the best result on two test datasets; A 
&B and D, while recording a similar score to NEMO on 
test dataset C. NEMO also recorded the best result on the 
test dataset C. NEMO [57] is a nested MCTS algorithm; 
MCTS the algorithm where lower-level results are used to 
bootstrap the upper-level results [13]. NEMO is a strong 
algorithm, however, it includes complex hand-engineered 
heuristics such as different distributions of base and base 
pairs in junctions and loops. While such constraints are key 
in RNA Inverse Folding, they do not scale well in large-scale 
RNA engineering. In contrast, SPRNA does not have such 
constraints: it automatically learns the correct base and base 
pair distributions without any supervision or rules. This is 
achieved by training the policy function through self-play 
(self-improvement). While LEARNA can also be consid-
ered a self-improving algorithm (policy gradient), it is out-
performed by our model on all the test datasets. Moreover, 

its design objective, learning and state representation are 
different from SPRNA. The LEARNA recorded a folding 
accuracy of 105/146 (71.92%), 21/29 (72.41%), 88/100 
(88%) and 68/100 (68%) on test datasets A &B, C, D and F 
respectively. Accordingly, this corresponds to a margin of 
12.32, 9.83, 4 and 1% when compared to SPRNA(W = 4) on 
test datasets A &B, C, D and F, respectively. Furthermore, 
SPRNA also outperformed MODENA, RNAiFold, RNAIn-
verse and MCTS-RNA on test datasets A &B, C, D and F. 
MCTS-RNA (abbreviated as MCTS in the results table) is 
an MCTS-based algorithm that selects an optimal action by 
performing several simulations and then backpropagating 
the reward signal at the end of the simulation to reinforce the 
action selection process. This is achieved by incrementally 
building the tree, and collecting statistics such as the number 
of node visits and average Q-values. While MCTS-RNA was 
run for 500 simulations, we were able to get better results 
with 1 simulation using SPRNA e.g. in every step of the epi-
sode a one-step look-ahead is performed until the terminal 
state when all the design positions are filled (single simula-
tion). Besides the performance gains, SPRNA was able to 
design RNA sequences that other baselines failed to design 
e.g. Figure 5 (from test dataset A & B), Fig. 6 (test dataset 
C), and Fig. 7 (test dataset D), are such examples. SPRNA 
learned to correctly balance the base and base pair distribu-
tion in left and right junctions and the loops.

On MFE and GC content In RNA Inverse Folding is 
important for designing a model which not only accurate 
but also designs sequences with desired MFE and GC con-
tent values. The latter and the former properties determine 
the functional effectiveness of the RNA sequences in both 
in vitro and in vivo [40, 80]. While there is no conclusive 
argument on the optimal MFE and GC content values, 
sequences with higher GC content and lower MFE values 
are generally more stable [17, 78]. According to Table 7 
SPRNA ( W = 4) recorded the highest mean GC content 
value of 54.25% compared to other baselines; RNAInverse: 
49.89%, NEMO: 52.05%, MCTS: 51.77%, iFold: 49.76%, 
MODENA: 50.34% and LEARNA: 51.10%. This corre-
sponds to a margin of 4.36, 2.2, 2.48, 4.49, 3.91 and 3.15% 
respectively. SPRNA and NEMO recorded the lowest mean 
MFE values of − 53.03 and − 52.05 respectively which can 
be translated to higher stability.

Table 10   Parameter/hyperparameter for the value network

Parameter/hyperparameter/setting Value

Dropout 0.4
Learning rate 1e−05
Optimizer Adam
First CONV features 64
Second CONV features 64
Kernel size 4
Adaptive pooling size 2
Batch size 32
Learning rate decay exponential
Epochs 100

Table 11   SPRNA with one-hot encoding

Data Solved MFE GC content

A & B [/146] 90 − 69.20 51.34
C [/29] 19 − 40.40 55.10
D [/100] 85 − 43.31 48.22
F [/100] 59 − 38.12 53.45
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On the inference time Time complexity is a key factor in 
any computational problem. We benchmarked how long the 
SPRNA ( W = 4) takes to design RNA sequences on average. 
The average time is reported in seconds and only includes 
the inference time. The average SPRNA inference time 
across the test dataset was 3.26 s while the baselines 3.67, 
3.22, 6.29, 4.28, 29.06 and 15.24 s for RNAInverse, NEMO, 
MCTS, iFold, MODENA and LEARNA respectively. This 
corresponds to a margin of 0.41, 0.04, 3.03, 1.02, 25.8 and 
11.98 s respectively. SPRNA recorded the second-lowest 
average inference time.

On the test datasets The test datasets A &B, C, D and F 
are different in terms of the complexity of the target struc-
tures. Test datasets A &B, C and D are relatively simple 
compared to test dataset F. Complexity of dataset F is attrib-
uted to the dataset generation process which included com-
plex junctions and stem loops for the Eterna 100 challenge. 
We refer the readers to Anderson-Lee et al. [5] for more 
details. Such complexities, however, we are not part of the 
SPRNA training dataset yet SPRNA still recorded a com-
petitive performance on test dataset F-69/100 (69%).

This shows that SPRNA learns novel RNA folding pat-
terns that can be generalized to new unseen target struc-
tures. We argue that augmenting the SPRNA training set 
with complex RNA sequences can improve its generaliz-
ability subsequently leading to better performance on more 
complex RNA Inverse Folding problems tasks. This is a key 
future research direction.

Future Work

SPRNA has recorded very competitive yet promising results. 
Despite this, however, it did not perform well on dataset F 
containing complex loops and junctions (for Eterna chal-
lenging puzzles). Part of our future work will involve aug-
menting the training dataset with complex sequences to 
allow for better generalization and performance. In addition, 
we are also keen on designing molecular-aware value and 
policy networks that accept bases and base pairs as atomic 
input of Nitrogenous bases. This can be achieved by using 
graph neural network architectures such as GNN [42] or 
RGCN [68]. This design choice can lead to better perfor-
mance due to better molecular representation.

Conclusion

In this paper, we presented a new RNA Inverse Folding 
model called SPRNA. By performing a one-step look-
ahead using a deep value network, it selects the optimal 
action given base or the base pair set. The model recorded 
the best score on two test datasets while recording similar 

accuracy performance on one dataset. An RNA Inverse 
Folding model should design sequences that fold accord-
ing to the given target as well as have the desired MFE 
and GC content. SPRNA designed GC-richer thus more 
stable sequences. Augmenting the training dataset with 
complex samples can help a one-step look-ahead model 
like SPRNA design complex RNA. Similarly, designing 
molecular-aware policy or value networks can also lead to 
better performance. The latter and the former are two key 
interesting future research fronts.

Appendix 1 Value Network Training

The value network was trained according to the following 
parameters and hyperparameter constraints. These were 
selected using Optuna [1]. framework (Table 10).

Appendix 2 One‑Hot Feature Encoding 
Results

The experiments according to one-hot encoding did not 
yield better scores compared to the coding scheme of the 
results presented in the experiment section of this paper 
(Table 11).

Appendix 3 Software and Hardware Settings

The SPRNA was trained with PyTorch 1.13 and Python 3.7. 
All the experiments were run on NVIDIA V100.
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