
RNA Generative Modeling With Tree Search
1st Stephen Obonyo

LIASD
Paris 8 University

Paris, France
sobonyo@up8.edu

2nd Nicolas Jouandeau
LIASD

Paris 8 University
Paris, France
n@up8.edu

3rd Dickson Owuor
SCES

Strathmore University
Nairobi, Kenya

dowuor@strathmore.edu

Abstract—Ribonucleic acid (RNA) molecules are key in many
biological processes. The ability to generate RNA sequences
that fold according to a given target structure while satisfying
constraints such as minimum free energy (MFE) and the GC
content is important in many applications such as synthetic
biology and drug design. In this work, we propose a novel method
for designing RNA sequences that satisfy these constraints. Our
method uses an RNA-based Language Model (LLM) to generate
RNA sequences while guiding the RNA sequence generation
process using Monte Carlo Tree Search (MCTS). The MCTS
ensures that the RNA-based LLM sequence generation process
leads to a valid RNA sequence that folds according to the
target structure. Instead of performing random rollout during
the simulation phase of the MCTS, we sample the next RNA
sequence from the RNA-based LLM. By design, our method can
control LLM issues such as hallucinations where the generated
sequences are inconsistent with the training data, and generation
of invalid sequences as only rollouts that lead to correct RNA
design are considered. We show that our method, without user-
defined RNA design rules, can generate valid RNA sequences that
can fold accordingly while outperforming the existing models on
50% of the test datasets while also recording competitive results
on the remaining test datasets.

Index Terms—RNA Sequence Design, RNA Inverse Folding,
Monte Carlo Tree Search, Tree search, Generative Modeling,
Large Language Models, Deep Learning, Machine Learning.

I. INTRODUCTION

RNA is a biological sequence present in the body of
all living organisms. The sequence is responsible for key
biological functions such as gene regulation and expression,
protein translation, protein synthesis and genetic coding. An
RNA sequence is composed of a set of bases e.g. Cytosine(C),
Guanine (G), Uracil (U) and Adenine (A). According to [1],
GC and AU can form a base pair due to special molecular
bonding properties. These base pairs are commonly referred to
as Watson-Crick pairs. In addition to the Watson-Crick pairs,
UG can also form a base pair in some RNA sequences.

The distribution of the bases and base pairs in an RNA
sequence can vary depending on the complexity of the loops
and junctions. Despite the variation, however, the general
distribution of the base is 93%, 1%, 5% and 1% for A, U,
G and C respectively. This is in contrast to the base pairs is
distributed as 60%, 33% and 7% for GC or CG, AU or UA
and GU or UG respectively [2].

In RNA sequence design, also referred to as RNA Inverse
Folding, the goal is to design an RNA sequence that folds
according to a given target structure. While this is the primary

underlying objective, other key constraints that need to be
satisfied include: (i) sequence should have desirable minimum
free energy (MFE) and, (ii) the expected GC content. The
MFE is the minimum amount of energy required by the RNA
sequence to fold into its most stable conformational structure.
On the other hand, the GC content is the percentage of GC
base pairs in an RNA sequence. These two constraints are key
as they affect the stability of the RNA sequence. For instance,
RNA sequences with lower MFE values and higher GC content
values are considered more stable [3], [4].

In the worst-case scenario, RNA sequence design for most
targets is considered an NP-hard problem [6]–[8]. The RNA
design of simple sequence, however, can be solved in quadratic
or polynomial time. [6], [7].

Despite RNA sequence design being a challenging problem,
it has a wide range of applications in biology and medicine.
For instance, the development of new drugs and vaccines is
contingent on the development of effective RNA sequence
design methods. Furthermore, RNA sequence design also has
a wide range of applications in nanotechnology and synthetic
biology [9] and the design of RNA sequences for self-assembly
and nanostructures [10].

Based on the significance of the RNA sequence design, it
has been one of the active research areas in computational
biology. Several methods have been proposed to solve the
RNA sequence design including (i) exploring the whole search
space through dynamic programming methods [11], (ii) con-
ducting a local search to find the solution from candidate
solutions [12], (iii) using genetic and evolutionary algorithms
to find the optima which is as close as possible to the global
solution [13], [14], (iv) physics-based modelling [15]–[17],
(v) constraint programming with GC and energy requirement
constraints [18], (vi) tree search methods such as MCTS [19]
and nested MCTS [2] to find the optimal solution by iteratively
sampling the search space by selecting nodes based on the
Upper Confidence Bound (UCB) then expanding the selected
node and sampling the next base or base pair until the the
terminal state is reached, (vii) combining tree search with
Deep Learning model as policy or value function [20] and,
(viii) Reinforcement Learning (RL) where the agent (model)
learns by trial and error by interacting with the environment
to find the optimal policy [21], [22].

Tree search, e.g MCTS, RL and recently LLM-based meth-
ods are state-of-the-art methods for solving complex RNA

Fig. 1. RNA Sequence Design Pipeline. (A) Target structure: secondary structure of the target encoded in Dot-bracket notation; (B) designed RNA sequence:
the base pairs and bases are assigned to the design positions leading to the sequence GGUGGCACACCU. (C) Folding the designed RNA sequence: the
sequence is folded and the base pair and base positions are compared to the target’s matching parenthesis and dots respectively. The matching parenthesis
in the target structure accepts base pairs GC/CG, AU/UA or GU/UG while the dots accept bases A, U, G or C. The base pairs in (C) are compared to
the matching parenthesis in (A) and the bases are compared to the dots in (A). If the comparison leads to a hamming distance of 0, the RNA design (B) is
considered successful. Source: [5].

sequence design problems. We highlight some of the existing
works in these three areas in the following paragraph.

In the first example, MCTS-RNA [19] uses classical MCTS
with random policy rollout. After the selection of a node and
expanding it according to the MCTS algorithm, a random
policy is used to randomly sample the next base or base pair
up to the terminal state. For the second example, [2], is an
MCTS-based solution that uses nested MCTS with adaptive
user-defined RNA design rules. In nested MCTS, the solutions
from the lower-level MCTS are used to guide the search in
the upper-level MCTS. For the third instance, [20] introduces
a novel method of combining tree search (MCTS) with the DL
model. Guiding search with ML/DL [23], [24] is a powerful
optimization method for solving problems with large search
spaces like RNA sequence design. The fourth instance, [21], is
the RL-based method which uses policy gradient [25] to learn
the optimal policy for RNA sequence design. In RL, a policy
is a function that maps the state to the action e.g the policy can
take an intermediate RNA sequence (state) and predict the next
base or base pair (action). The policy gradient method learns
the policy by following the gradient of the expected reward
e.g. the hamming distance between the target structure and
the predicted structure. [26] is an RNA sequence design that
is based on the LLM model. In the work, the LLM learns by
predicting the randomly masked bases and base pairs in the
RNA sequence. This process is then followed by fine-tuning
the LLM model on the RNA sequence design as a downstream
task.

MCTS-RNA and nested MCTS are designed based on
random policy rollout. Such policy design is prone to sub-
optimality and can be computationally intensive in large action
spaces [24]. On the other hand, RL-based methods such as
LEARNA [21] are based on policy gradient and thus inherit
the convergence and stability issues associated with the RL
algorithms. LLM-based methods are prone to hallucinations
[27], [28] and generating invalid sequences that do not fold
according to the target structure. In our work, we leverage
the tree search (MCTS) which guides the RNA-based LLM
such that hallucination and generation of invalid sequences are
controlled. Furthermore, while some methods such as dynamic
programming, constraint programming and genetic algorithms
have also recorded very competitive results, these algorithms

are either computationally intensive, require user-defined rules
or converge to the local optimum.

In natural language processing (NLP), LLM has signif-
icantly improved with the introduction of attention-based
models [29], [30]. These methods are key in modeling long-
range semantic and syntactic dependencies in sequences. Such
relationships are key in solving downstream tasks such as ma-
chine translation, question answering and text summarization.
LLM unlocked the potential of Generative Modeling (GM) in
NLP and by extension in other domains such as computational
biology e.g. protein inverse folding [31], [32], and RNA-based
applications [33]–[37] and Retrosynthetic Planning [38]–[40].

LLMs can be trained on a large set of RNA sequences and
learn the distribution of the bases and base pairs in the RNA
sequences. Subsequently, the trained LLMs can be used to
predict new sequences that are consistent with the training
data (generative) [41], [42].

RNA-based LLMs, just like other LLMs, are prone to
generating inconsistent sequences due to hallucinations [27],
[28]. In addition, to this limitation, evaluating the quality of
the generated sequences is hard. While several methods have
been proposed to solve the two aforementioned issues, existing
proposals are not universally applicable. For instance, in RNA
sequence design, the generated sequences are evaluated ac-
cording to their ability to fold according to the target structure,
thus, classical LLMs evaluation methods such as perplexity,
BLEU and ROUGE scores are not applicable.

Combining tree search with DL is an effective optimization
method for solving non-deterministic problems [23]. In this
work, we propose a novel method that combines two key
methods: LLMs and MCTS. Our method involves generating
RNA sequences using an RNA-based language model while
guiding the sequence generation process using MCTS. By de-
sign, our method can control LLM issues such as hallucination
and generation of invalid sequences as only the paths that lead
to valid RNA design are considered.

Contribution. In this work, we propose a novel method
for designing RNA sequences using an RNA-based language
model. Our method uses MCTS to guide the RNA sequence
generation process whereby the intermediate sequence in the
tree is used as a prompt to the language model during the
simulation phase. MCTS builds a search tree by adding a

new node corresponding to a new base or base pair. The
nodes in the path leading to the addition of a new node are
selected using the Upper Confidence Bound (UCB) algorithm
[43]. During the simulation phase of the MCTS, the algorithm
samples the next base pair or base from the LLM up to the
terminal state. The resulting sequence is then folded and the
reward (hamming distance [44]) is computed between the
target structure and the predicted structure. The reward is
then backpropagated to the root node of the tree. The reward
equation is shown in Equation 1. I is the indicator function
that returns 1 if the condition is true and 0 otherwise while
pi and ti are the tokens in the predicted and target structure
respectively.

H(p, t) = 1

N

N∑
i=1

I(pi 6= ti) (1)

The rest of the Sections in this paper are organized as
follows: Section II presents some of the definitions used
in this work, Section III covers the RNA sequence design
problem, Section IV describes our proposed method, Section
V describes the experimental setup including the datasets used,
Section VI covers the discussion of the result, and Section VII
covers the related work, Section VIII covers the future work
and Section IX concludes the paper.

II. DEFINITIONS

In this section, we present some of the definitions used in
this work.

i) Base and base pair position: A base is a single nu-
cleotide in an RNA sequence e.g A, U, G, C. A base pair
is a pair of bases that bond together to form a base pair
e.g. AU, UA, GC, CG, GU, UG. The base pair position
is the position in the RNA sequence design which accepts
a base pair while the base position is the position in the
RNA sequence design which accepts a base.

ii) Target and predicted structure: An RNA target structure
is denoted using Dot Bracket notation standard where
the matching parenthesis corresponds to the positions that
can accept a base pair while the dots correspond to the
positions that can accept a base. For instance, ((((...)))).
is a valid target structure. The predicted structure is the
structure (also in Dot Bracket notation) obtained from
folding an RNA sequence from the design process e.g.
GGUGGCACACCU RNA sequence can be folded using
off-the-shelf tools such as the ViennaRNA package [45]
to obtain the predicted structure such as .(((...))).., which
can be compared to the target structure.

iii) Valid RNA design: If the hamming distance between
the target structure and the predicted structure is 0, the
RNA design is considered successful. We refer to such a
design as a valid RNA design. The hamming distance is
computed using Equation 1.

iv) Accuracy: In the experiments section of this work we
used the accuracy metric which is computed as 1−H(p, t)
to evaluate the validity of the RNA design. In the results

section, the reported accuracy is scaled to range from 0
to 100.

v) Evaluation Function: This is the function that accepts the
predicted structure and the target structure and computes
the hamming distance or accuracy between them. The
result corresponds to the quality of each MCTS rollout.

vi) Rollout Policy: A policy is a function that maps the state
to the action. A rollout policy is a function that is used to
select the next base or base pair in the MCTS simulation
phase. In classical MCTS, the rollout policy is random
e.g. the valid actions - bases or base pairs - are selected
randomly. In our work, the rollout policy is the RNA-
based language model.

vii) RNA user-defined rules: During the RNA sequence
design, the user can define rules that guide the RNA
sequence design process. For instance, the user can define
rules that guide the selection of the next base or base pair
with a custom or adaptive probability distribution in left
and right junctions and loops. While in our work, we do
not use user-defined rules, some state-of-the-art methods
such as nested MCTS [2] use them.

viii) Desing Position: During the design process, any RNA
design position that does not have a base or base pair is
considered a design position.

III. RNA SEQUENCE DESIGN

There are three RNA sequence structures: (i) the primary
structure, (ii) the secondary structure and (iii) the tertiary
structure. The primary structure is the sequence of bases and
base pairs e.g. GGUGGCACACCU. The secondary structure
includes bases and base pairs encoded as matching parentheses
and dots (Dot Bracket) respectively e.g. ((((...)))). (from fold-
ing GGUGGCACACCU). The tertiary structure is the three-
dimensional structure of the RNA sequence. In this work, we
only work with the primary and secondary structures.

Designing RNA or RNA Inverse Folding involves assigning
bases and base pairs to the design positions according to
the target structure such that the resulting RNA sequence
folds according to the target structure. Importantly, while any
base pair {GC, CG, AU, UA, GU, UG} can be accepted
in the base pair design position, not all bases will lead to
a valid RNA design. The same applies to the base position.
This behavior is due to the (i) molecular bonding properties
associated with the base and base pairs, and (ii) the favorable
stable conformational structure of the resulting RNA sequence.

While the primary objective of the RNA sequence design
is to design an RNA sequence that folds according to the
target structure, other constraints such as sequence with the
minimum free energy (MFE) and GC content need to be
satisfied. The GC content is the percentage of G/C base pairs
in an RNA sequence. The MFE is the minimum amount of
energy required by the RNA sequence to fold into its most
stable conformational structure. There are no widely accepted
ranges for the MFE and GC content. However, lower MFE
values and higher GC content values are considered desirable
as they result in more stable RNA sequences [3], [4].

IV. METHODS

In this section, we describe our proposed method for de-
signing RNA sequences. Our approach involves generating
RNA sequences using an RNA-based language model while
guiding the sequence generation process using MCTS. We also
describe the design of the RNA-based language model, its
integration with the MCTS and the method for programming
the RNA sequences into sentences which are used to train the
language model. A description of the dataset used in this work
is also presented in this section.

A. Problem Formulation

RNA sequence design can be formulated as a sequential
decision problem composed of state, action, transition func-
tion, reward and discount parameter in the form of a set
{S,A,P,R, γ}. The state S is the all possible RNA sequences
that can be generated with {A,U,G,C}, the action A is the set
of all possible bases and base pairs that can be assigned to the
RNA sequence e.g. {A,U,G,C,AU,UA,GC,CG,GU,UG}
- for base positions the valid actions are {A,U,G,C} while
for base pair positions it’s {AU,UA,GC,CG,GU,UG}, the
transition function P which adds a new base or base pair to
the intermediate RNA sequence (the LLM) and the reward R
is the hamming distance (see equation 1) between the target
structure and the predicted structure. The discount parameter
γ controls the significance of the future rewards. Here, the
value of γ is set to 1.0 throughout the experiments.

B. Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search is an any-time search optimization
algorithm that has been successfully applied to many problems
in playing computer games, scheduling and RNA sequence
design [46]. The algorithm is composed of four key phases:
(i) selection: the best node to expand is selected using the
UCB algorithm, (ii) expansion: the selected node is expanded
by adding a new node to the tree, (iii) simulation: the algorithm
randomly selects the valid actions up to the terminal state, (iv)
backpropagation: the reward value is backpropagated from the
terminal state to the root node of the tree. The reward value
is then used to update the Q values of the nodes in the tree.
Figure 2 shows the MCTS phases.

In this work, during the selection phase, the algorithm
selects the best base pair or base based on the modified UCB
equation 2 where Q(s, b) is the Q value of the current node, s
is the current node, b is the base pair or base, C is a constant
set to

√
2, P (b) is the prior probability of the base pair or base

9 (we use the general distributions described are described in
Section I), and Ni and ni are the number of times the parent
node and the child node have been visited respectively. In
expansion, the algorithm expands the current node by adding
a new node to the tree. Each new node added corresponds to
a new base pair or base added to the RNA design pipeline.

U(s, b) = Q(s, b) + C × P (b)×

√
ln(Ni)

ni
(2)

In the simulation phase, instead of selecting the next base
pair or base to assign randomly up to the terminal state,
we sample the next base and base pair from the RNA-based
language model - the intermediate sequence in the tree is used
as a prompt for the language model. In the backpropagation
phase, the reward value is backpropagated from the terminal
state to the root node of the tree. The reward is the hamming
distance (shown in Equation 1) between the target structure
and the predicted structure. This value is then used to update
the Q values of the nodes in the tree. The algorithm terminates
when the maximum number of iterations is reached. The
MCTS Algorithm used is shown in Algorithm 1. The algorithm
is run for a maximum of 1000 simulations.

Data: RNAState, Iterations N
Result: Base or base pair b
Node = Tree(RNAState)
i = 1
while i ≤ N do

if Node is not fully expanded then
b = selectAction(Node)
Node = expand(Node, b)
break

end
else

Node = selectNextNode(Node)
end
reward = LLM rollout(Node)
backpropagate(Node, reward)

end
return bestAction(Node)

Algorithm 1: MCTS with LLM Rollout

C. Language Modelling

For the last three decades, NLP, tasks such as machine
translation, text summarization, question answering and text
generation have been actively researched. The recent advances
in Deep Learning (DL) [33], [47] and novel architectures
such as attention mechanisms and Transformers [29], [30]
have significantly improved the performance of these tasks. In
addition, the introduction of Large Language Models (LLMs)
[41], [42], [48], [49] has unlocked the potential of transfer
learning in NLP with pre-trained LLMs. This technique is
useful in solving downstream tasks such as sentiment analysis,
text classification, text summarization and question answering.

LLMs are modeled to learn the distribution of the tokens
(words) in a sequence. Theoretically, this can be conceptual-
ized as a Markov chain where the probability of word wi is
conditioned on the previous n words wi−n, wi−n+1, ..., wi−1

or, precisely just the previous word wi−1. Currently, there
are two main classes of LLMs: (i) autoregressive models
and (ii) masked language models. Autoregressive (decoder)
models such as GPT [41] and GPT-2 [42] are based on
the Transformer architecture [30]. The models are trained to
predict the next token in a sequence given the previous tokens.

Fig. 2. MCTS phases. Selection, expansion and backpropagation. During the rollout (simulation) phase, the algorithm samples the next base pair or base
from the LLM up to the terminal state. The resulting sequence is then folded and the reward (hamming distance) is computed between the target structure
and the predicted structure. The reward is then backpropagated to the root node of the tree.

Masked (encoder) language models such as BERT [49] and
Roberta [50] are also based on the Transformer architecture,
however, the models are trained to predict the masked tokens
in a sequence e.g. given the sequence I went to the [MASK],
the model is trained to predict the masked token swimming
pool. Apart from the success of NLP, LLMs have also been
applied to computational biology tasks such as protein inverse
folding [31], [32], and RNA-based applications [26], [34] and
Retrosynthetic Planning [38]–[40], [51].

While the classical MCTS simulation phase is based on
the random policy, in this work we sampled valid actions
(bases and base pairs) from the RNA-based language model.
Our algorithmic design is motivated by the increasing sub-
optimality associated with the random policy [24]. This step
has also been argued to be computationally intensive in some
problem contexts such as molecular modeling where the action
space corresponds to all valid chemicals in organic chemistry.

We train an RNA-based language model on 2M RNA se-
quences obtained from the RNACentral Database 1. The RNA
sequences from that database are in their primary structure. In
RNA Sequence Design, however, the input is the secondary
structure. Accordingly, we generate the secondary structure
(the target) from the primary structure (the input) using the
ViennaRNA package [45]. Subsequently, we program the RNA
sequences into sentences according to the target structure and
then train the language model. The procedure is discussed in
Section IV-D.

The model architecture was based on a smaller version of
the autoregressive GPT-2 model called Distilled-GPT2 [52].
Distilled-GPT2 was designed by distilling knowledge from
the GPT model. Knowledge Distillation (KD) is a technique
used to transfer knowledge from a large model to a smaller
model [53] as such the smaller model can be trained faster
and requires less computational resources yet still maintains
the performance of the close or equal to the larger model.
Instead of training the model from scratch, we fine-tuned a
model already trained on a large corpus of RNA sentences.

1https://ftp.ebi.ac.uk/pub/databases/RNAcentral/releases/

The information about the Distilled-GPT2 pre-training can be
found on the HuggingFace page 2.

The Adam optimizer [54] with a cosine annealed learning
rate starting at 5e-5 was used to train the model. During
training, we used a batch size of 16 while running the training
session for a total of 50 epochs. RNA Model was trained on
a single Tesla T4 GPU (16GB memory). The training took 5
days. The RNA-based language model was trained by using
The model is implemented using the PyTorch V.1.9.0 and
framework [55] and HuggingFace Transformers library V.2.6.0
[56]. The context length was set to 1024. We have included
the training script in the supplementary material.

D. Programming RNA Sequences

The programming makes it easy to map the intermediate
sequence during the design to the target structure. The RNA-
based model is trained on the RNA sentence as well as its
reversed copy. Figure 3 shows the RNA sentence generation
process.

Fig. 3. figure
Programming RNA Language. In (iii) top-most: the RNA

sequence index of the base pair positions are concatenated
e.g. positions 1 and 11 are base pair positions leading to the
first GC, and position 12 is a base position leading to U (the

last token). In (iii) bottom-most: reversed RNA sentence.

RNA sequences (sentences) used to train the Language
Model were generated as follows: (i) Given an RNA sequence
from the database, we used the ViennaRNA package [45] to
fold the sequences into their target structures, (ii) match the
base pairs and bases to their respective positions in the target
structure, and (iii) index the base pairs and bases according to

2https://huggingface.co/distilgpt2

the target. The procedure used to program the RNA sequences
into a set of sentences is shown in the Algorithm 2.

Data: RNA Sequence seq
Result: RNA Sentence sent
sent = []
base, base pair = Target Structure(seq)
for pos in base + base pair do

if isPaired(pos) then
sent += seq[pos[0]] + sent[pos[1]]

end
else

sent += seq[pos]
end

end
return sent

Algorithm 2: Programming RNA Sequences

V. EXPERIMENTS

We tested our algorithm four datasets: [14], [13], [21],
[57]. We refer to these datasets as Kauf, Modena, Runge
and Eterna respectively. Kauf contained 146 and 103.3 RNA
sequences and average length respectively, Modena: 29 and
191.9, Runge: 100 and 240.7 and, Eterna: 100 and 159.2. We
compare our method to four other methods: (i) MODENA
[13]: genetic algorithm, (ii) NEMO [2]: nested MCTS, (iii)
MCTS-RNA [19]: MCTS with local search enhancements (iv)
LEARNA [21]: policy gradient algorithm and (v) RNAInverse
[57]: dynamic programming. The results are shown in Table
I.

VI. DISCUSSION

In this section, we discuss the results of the experiments.
The discussion is based on the validity of the RNA sequence
design, the GC content and the MFE. Note, however, that the
accuracy values are normalized in the range 0 to 100 i.e. 1-
H(p, t)× 100. We also show some sample solutions found by
our algorithm.

On valid RNA sequence design. We measured the validity
of the RNA sequence design by computing the accuracy
between the target structure and the predicted structure. Our
method outperformed the comparative methods on half of the
test datasets except for the Eterna and Runge datasets. NEMO
design is based on nested MCTS where the solutions from the
lower-level MCTS are used to guide the search in the upper-
level MCTS [2]. While the algorithm is quite competitive, it
includes several RNA user-defined rules that are not univer-
sally applicable to all RNA sequence design problems and
thus impede large-scale RNA sequence design. For instance,
the NEMO algorithm uses hand-designed base and base pair
probability distributions for the left and right junctions as well
as the loops. Furthermore, due to the nested recursive nature
of the algorithm, it is computationally intensive compared to
the classical MCTS algorithm. Our method, however, does not
include any RNA user-defined rules and thus can be applied to

any RNA sequence design problem at any scale. In addition,
the MCTS phase of our method is computationally effective
as it is based on the LLM prediction which can be achieved
on O(1) time complexity. This is further supported by the
comparison with the MCTS-RNA method, a model that is
similar in design to our method. MCTS-RNA is based on the
classical MCTS algorithm where in the simulation phase the
actions are sampled randomly up to the terminal state. As
previously mentioned, this algorithmic design is prone to sub-
optimality and computationally intensive in large action spaces
or non-terminating episodes. This is reflected in Table I where
our method outperformed MCTS-RNA on all the test datasets
a difference of more than 5 (on average). We argue that this
variation is because our LLM rollout policy was stronger than
the random policy used in the MCTS-RNA. While the design
of the rollout policy in our method and MCTS-RNA is the
primary difference, another key difference is that our UCB
method includes a bias term P (b) which is the prior probability
of the base pair or base. In this work, we used the values of
the general distributions described in Section I.

While LEARNA, a policy gradient algorithm, recorded the
best performance on the Runge dataset, our method outper-
formed it on the remaining datasets. The ability of our model
to outperform LEARNA can be attributed to the inheritance
of policy gradient algorithm issues such as convergence and
stability. MODENA is a genetic-based algorithm as such it is
prone to local optima. Our method outperformed MODENA
on all test datasets with a difference of more than 35 on
average. Similar observations were noted while comparing the
performance of RNAInverse [57] to our work.

Overall, our method outperformed the comparative methods
on half the test datasets. However, it did not record very
competitive results on the Eterna dataset. This dataset is chal-
lenging as the target structures are complex. Such complexity
is not adequately reflected in the training dataset thus the
model is not able to generalize well on that dataset. We believe
that by augmenting the training dataset with more complex
sequences, our method can generalize better on the Eterna
dataset. However, this is a challenge as the current RNA
databases do not contain a sequence of such complexities. This
lays an interesting direction for future work.

On GC content and MFE. The GC content and MFE are
important factors in RNA sequence design [9]. RNA sequences
with higher GC content and lower MFE values are considered
more stable. There are no widely agreed expected values of
the GC content and MFE. However, the GC content values
above 50% and less than 60% are considered desirable in many
instances while for MFE, lower values are considered more
desirable. In Figure 5 and Figure 6, we compare our MFE
and GC content values to some of the state-of-the-art methods.
We compute the MFE values using the ViennaRNA package
[45]. Our method records GC content value that is within the
expected ranges - based on the comparative state-of-the-art
methods such as NEMO and MCTS-RNA. On average (Figure
5), however, our method records a slightly higher GC content
value compared to the other methods. The GC content value

TABLE I
Accuracy between target structure and RNA sequence fold. All the models were run 4 times. The average values are reported.

RNAInverse MODENA NEMO MCTS-RNA LEARNA Ours
Runge 19.05 36.51 90.01 89.65 94.30 90.88
Modena 19.05 47.62 90.80 90.48 90.33 95.91
Kauf 45.55 44.16 92.21 89.61 80.20 93.89
Eterna 18.99 16.46 81.01 58.23 60.70 70.95

Fig. 4. Sample correct folds found in our algorithm. The comparative models were not able to accurately fold these examples. In (A); a sample from the
Eterna dataset, (B); sampled from the Kauf dataset (C); a Modena dataset sample. The proposed the model learned to balance base and base pair distribution
loops and left and right junctions.

associated with the MCTS-RNA includes very small variation.
However, any RNA sequence design method should be able
to generate sequences with a wide range of GC content values
that are within the expected ranges.

Fig. 5. GC Content Comparison

Sample solutions. Some unique solutions were found by
our algorithm. The comparative models were not able to
accurately fold these examples. In (A); a sample from the
Eterna dataset, (B); sampled from the Kauf dataset (C); a
Modena dataset sample. As shown the proposed model learned
to balance base and base pair distribution loops and left and
right junctions without the need for user-defined rules.

Fig. 6. MFE Content Comparison

VII. RELATED WORK

[22] introduced a Reinforcement Learning (RL) approach
utilizing Graph Convolution [58] to model RNA Inverse Fold-
ing. This method closely resembles the approach by [59],
employing undirected graphs and atomic-level sampling. Since
RNA sequences inherently exhibit graph-like structures, both
methods uphold this structural constraint throughout the mod-
eling process. [21] proposed an RL-based method that learns
to select the best action At at each time step. Specifically,
their approach is based on the Proximal Policy Optimization
(PPO) algorithms [60], utilizing gradient descent methods to
optimize action selection based on expected reward signals.

Various tree search methods have been proposed for RNA
Inverse Folding. [19] proposed a based method with local
search enhancements, considering factors such as mismatches
and constraints like the expected GC content. The NEMO
model, introduced by [2], demonstrated the ability to de-
sign more complex sequences with improved performance,
particularly when coupled with varying base or base pair
distributions. [2] was further extended by [20], allowing for
trajectory adaptation using a deep neural network as a policy
function. Tree search methods, a more recent development,
are compared to some existing Dynamic Programming (DP)
approaches. INFO-RNA [61] employed DP to design initial
sequences, refined by a one-step look-ahead search function.
RNAinverse [11] modeled RNA Inverse Folding using adap-
tive random walks, minimizing the difference between the
target and the designed structure at paired locations. The model
proposed by [62] drew inspiration from random walks.

RNAiFold [18] utilized constraint programming, specifying
constraints associated with the designed sequence before initi-
ating the design process. These constraints include the desired
Minimum MFE, undesired MFE, and ranges for base and base
pair distributions. AntaRNA [14] employed swarm intelligence
to learn the local sequence features crucial for achieving the
correct fold. This the method was further extended to design
more complex RNA structures, particularly pseudoknots. Ge-
netic and evolutionary algorithmic strategies have also been
explored in several RNA Inverse Folding studies, including
MODENA [13], ERD [63], and works by [64], [65].

VIII. FUTURE WORK

In this work, we proposed a novel method for designing
RNA sequences using an RNA-based language model. Our
method uses MCTS to guide the RNA sequence generation
process whereby the intermediate sequence in the tree is used
as a prompt to the language model during the simulation phase.
In the future, we plan to extend our method to handle longer
and more complex RNA structures (pseudoknots). In addition,
we plan to design larger RNA-based language models that can
model longer context lengths. Finally, we plan to experiment
with iterative deepening search as an alternative tree search
algorithm.

IX. CONCLUSION

In this paper, we proposed a novel method for designing
RNA sequences using an RNA-based language model which
guides the sequence generation process using MCTS. The tree
search ensures that only valid sequences are generated and
as such, common issues associated with the LLMs such as
hallucinations and invalid sequences generation are controlled.
We showed that our method outperformed the comparative
methods on half of the test datasets. We also showed that our
method can generate valid sequences that match the expected
ranges of the MFE and GC content. As part of future work,
designing larger RNA-based language models that can model
longer context lengths and experimenting with an alternative
tree search method would be interesting.

REFERENCES

[1] K. F. Schaffner, “The watson-crick model and reductionism,” The British
Journal for the Philosophy of Science, vol. 20, no. 4, pp. 325–348, 1969.

[2] F. Portela, “An unexpectedly effective monte carlo technique for the rna
inverse folding problem,” BioRxiv, p. 345587, 2018.

[3] E. Trotta, “On the normalization of the minimum free energy of rnas
by sequence length,” PloS one, vol. 9, no. 11, p. e113380, 2014.

[4] H. J. J. Cleaves et al., “Watson-crick pairing,” Encyclopedia of Astrobi-
ology, pp. 2650–2650, 2015.

[5] S. Obonyo, N. Jouandeau, and D. Owuor, “Self-playing rna inverse
folding,” SN Computer Science, vol. 5, no. 4, p. 403, 2024.

[6] T. Akutsu, “Dynamic programming algorithms for rna secondary struc-
ture prediction with pseudoknots,” Discrete Applied Mathematics, vol.
104, no. 1-3, pp. 45–62, 2000.

[7] R. B. Lyngsø and C. N. Pedersen, “Rna pseudoknot prediction in energy-
based models,” Journal of computational biology, vol. 7, no. 3-4, pp.
409–427, 2000.

[8] S. Ieong, M.-Y. Kao, T.-W. Lam, W.-K. Sung, and S.-M. Yiu, “Predicting
rna secondary structures with arbitrary pseudoknots by maximizing the
number of stacking pairs,” Journal of Computational biology, vol. 10,
no. 6, pp. 981–995, 2003.

[9] N. C. Seeman, “At the crossroads of chemistry, biology, and materials:
structural dna nanotechnology,” Chemistry & Biology, vol. 10, no. 12,
pp. 1151–1159, 2003.

[10] P. W. Rothemund, “Folding dna to create nanoscale shapes and patterns,”
Nature, vol. 440, no. 7082, pp. 297–302, 2006.

[11] I. L. Hofacker, “Vienna rna secondary structure server,” Nucleic acids
research, vol. 31, no. 13, pp. 3429–3431, 2003.

[12] M. Andronescu, A. P. Fejes, F. Hutter, H. H. Hoos, and A. Condon, “A
new algorithm for rna secondary structure design,” Journal of molecular
biology, vol. 336, no. 3, pp. 607–624, 2004.

[13] A. Taneda, “Multi-objective optimization for rna design with multiple
target secondary structures,” BMC bioinformatics, vol. 16, no. 1, pp.
1–20, 2015.

[14] R. Kleinkauf, M. Mann, and R. Backofen, “antarna: ant colony-based
rna sequence design,” Bioinformatics, vol. 31, no. 19, pp. 3114–3121,
2015.

[15] X. Xu and S.-J. Chen, “Physics-based rna structure prediction,” Bio-
physics reports, vol. 1, pp. 2–13, 2015.

[16] M. Zuker and P. Stiegler, “Optimal computer folding of large rna
sequences using thermodynamics and auxiliary information,” Nucleic
acids research, vol. 9, no. 1, pp. 133–148, 1981.

[17] M. Zuker and D. Sankoff, “Rna secondary structures and their predic-
tion,” Bulletin of mathematical biology, vol. 46, pp. 591–621, 1984.

[18] J. A. Garcia-Martin, P. Clote, and I. Dotu, “Rnaifold: a constraint
programming algorithm for rna inverse folding and molecular design,”
Journal of bioinformatics and computational biology, vol. 11, no. 02, p.
1350001, 2013.

[19] X. Yang, K. Yoshizoe, A. Taneda, and K. Tsuda, “Rna inverse folding
using monte carlo tree search,” BMC bioinformatics, vol. 18, no. 1, pp.
1–12, 2017.

[20] T. Cazenave and T. Fournier, “Monte carlo inverse folding,” in Monte
Carlo Search International Workshop. Springer, 2020, pp. 84–99.

[21] F. Runge, D. Stoll, S. Falkner, and F. Hutter, “Learning to design rna,”
arXiv preprint arXiv:1812.11951, 2018.

[22] P. Eastman, J. Shi, B. Ramsundar, and V. S. Pande, “Solving the
rna design problem with reinforcement learning,” PLoS computational
biology, vol. 14, no. 6, p. e1006176, 2018.

[23] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with deep
learning and tree search,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[24] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[25] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[26] Y. Zhang, M. Lang, J. Jiang, Z. Gao, F. Xu, T. Litfin, K. Chen, J. Singh,
X. Huang, G. Song et al., “Multiple sequence-alignment-based rna
language model and its application to structural inference,” bioRxiv, pp.
2023–03, 2023.

[27] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On faith-
fulness and factuality in abstractive summarization,” arXiv preprint
arXiv:2005.00661, 2020.

[28] A. P. Parikh, X. Wang, S. Gehrmann, M. Faruqui, B. Dhingra, D. Yang,
and D. Das, “Totto: A controlled table-to-text generation dataset,” arXiv
preprint arXiv:2004.14373, 2020.

[29] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[31] Z. Zheng, Y. Deng, D. Xue, Y. Zhou, F. Ye, and Q. Gu, “Structure-
informed language models are protein designers,” bioRxiv, pp. 2023–02,
2023.

[32] J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F.
Milles, B. I. Wicky, A. Courbet, R. J. de Haas, N. Bethel et al., “Ro-
bust deep learning–based protein sequence design using proteinmpnn,”
Science, vol. 378, no. 6615, pp. 49–56, 2022.

[33] J. Ding and A. Regev, “Deep generative model embedding of single-
cell rna-seq profiles on hyperspheres and hyperbolic spaces,” Nature
communications, vol. 12, no. 1, p. 2554, 2021.

[34] F. Ozden, S. Barazandeh, D. Akboga, U. O. S. Seker, and A. E. Cicek,
“Rnagen: A generative adversarial network-based model to generate
synthetic rna sequences to target proteins,” bioRxiv, pp. 2023–07, 2023.

[35] Z. Yan, W. L. Hamilton, and M. Blanchette, “Neural representa-
tion and generation for rna secondary structures,” arXiv preprint
arXiv:2102.00925, 2021.

[36] S. Li, S. Moayedpour, R. Li, M. Bailey, S. Riahi, M. Miladi, J. Miner,
D. Zheng, J. Wang, A. Balsubramani et al., “Codonbert: Large language
models for mrna design and optimization,” bioRxiv, pp. 2023–09, 2023.

[37] R. J. Penić, T. Vlašić, R. G. Huber, Y. Wan, and M. Šikić, “Rinalmo:
General-purpose rna language models can generalize well on structure
prediction tasks,” arXiv preprint arXiv:2403.00043, 2024.

[38] P. Schwaller, T. Gaudin, D. Lanyi, C. Bekas, and T. Laino, ““found
in translation”: predicting outcomes of complex organic chemistry
reactions using neural sequence-to-sequence models,” Chemical science,
vol. 9, no. 28, pp. 6091–6098, 2018.

[39] P. Karpov, G. Godin, and I. V. Tetko, “A transformer model for ret-
rosynthesis,” in International Conference on Artificial Neural Networks.
Springer, 2019, pp. 817–830.

[40] Y. Wan, C.-Y. Hsieh, B. Liao, and S. Zhang, “Retroformer: Pushing
the limits of end-to-end retrosynthesis transformer,” in International
Conference on Machine Learning. PMLR, 2022, pp. 22 475–22 490.

[41] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[42] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[43] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

[44] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
system technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[45] R. Lorenz, S. H. Bernhart, C. Höner zu Siederdissen, H. Tafer,
C. Flamm, P. F. Stadler, and I. L. Hofacker, “Viennarna package 2.0,”
Algorithms for molecular biology, vol. 6, no. 1, pp. 1–14, 2011.

[46] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte
carlo tree search: A review of recent modifications and applications,”
Artificial Intelligence Review, vol. 56, no. 3, pp. 2497–2562, 2023.

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[48] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” arXiv preprint arXiv:1801.06146, 2018.

[49] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[50] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[51] B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu Nguyen,
S. Ho, J. Sloane, P. Wender, and V. Pande, “Retrosynthetic reaction
prediction using neural sequence-to-sequence models,” ACS central
science, vol. 3, no. 10, pp. 1103–1113, 2017.

[52] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[53] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[56] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Transformers: State-
of-the-art natural language processing,” in Proceedings of the 2020
conference on empirical methods in natural language processing: system
demonstrations, 2020, pp. 38–45.

[57] J. Anderson-Lee, E. Fisker, V. Kosaraju, M. Wu, J. Kong, J. Lee,
M. Lee, M. Zada, A. Treuille, and R. Das, “Principles for predicting
rna secondary structure design difficulty,” Journal of molecular biology,
vol. 428, no. 5, pp. 748–757, 2016.

[58] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[59] G. Meng, M. Tariq, S. Jain, S. Elmetwaly, and T. Schlick, “Rag-web: Rna
structure prediction/design using rna-as-graphs,” Bioinformatics, vol. 36,
no. 2, pp. 647–648, 2020.

[60] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[61] A. Busch and R. Backofen, “Info-rna—a fast approach to inverse rna
folding,” Bioinformatics, vol. 22, no. 15, pp. 1823–1831, 2006.

[62] N. S. Merleau and M. Smerlak, “An evolutionary algorithm for inverse
rna folding inspired by lévy flights,” bioRxiv, 2022.

[63] A. Esmaili-Taheri and M. Ganjtabesh, “Erd: a fast and reliable tool for
rna design including constraints,” BMC bioinformatics, vol. 16, no. 1,
pp. 1–11, 2015.

[64] N. Dromi, A. Avihoo, and D. Barash, “Reconstruction of natural rna
sequences from rna shape, thermodynamic stability, mutational robust-
ness, and linguistic complexity by evolutionary computation,” Journal
of Biomolecular Structure and Dynamics, vol. 26, no. 1, pp. 147–161,
2008.

[65] R. B. Lyngsø, J. W. Anderson, E. Sizikova, A. Badugu, T. Hyland,
and J. Hein, “Frnakenstein: multiple target inverse rna folding,” BMC
bioinformatics, vol. 13, no. 1, pp. 1–12, 2012.

