
Lightweight Deep Learning for Weather
Prediction and Forecasting in Africa

Kinyua Gikunda1[0000−0001−7962−2168] and Nicolas
Jouandeau2[0000−0001−6902−4324]

1 Dedan Kimathi University of Technology, Nyeri, Kenya
patrick.gikunda@dkut.ac.ke

2 Université Paris 8, Vincennes - Saint-Denis
3 n@up8.edu

Abstract. Weather forecasting in Africa is hampered by sparse meteo-
rological data and limited computational resources. This paper addresses
these challenges by proposing lightweight deep learning (DL) for weather
prediction and forecasting. We integrate active learning and transfer
learning methods to enhance model training efficiency and accuracy. By
focusing on the informativeness and representativeness of training sam-
ples, our approach significantly reduces the need for extensive and costly
labeling. After training on a source dataset, model skills are transferred
to target datasets, allowing for effective weather variable predictions with
minimal data. Extensive experiments on three weather datasets demon-
strate that our hybrid Transfer Active Learning method achieves similar
classification accuracy compared to existing methods, using only 20%
of the training samples. This study highlights the potential of advanced
DL techniques to improve weather forecasting in Africa, despite the con-
straints of data scarcity and limited computational infrastructure.
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1 Introduction

Weather forecasting is a critical component in managing and adapting to environ-
mental changes, particularly in Africa [1]. The continent faces unique challenges
due to its vast geographical diversity and limited availability of meteorological
data. Many regions in Africa have sparse weather station networks, resulting in
uneven and incomplete datasets [2]. Additionally, the computational resources
required for advanced weather prediction models are often scarce, further com-
plicating accurate forecasting efforts. These challenges necessitate innovative ap-
proaches that can leverage available data and computational resources efficiently.
Deep learning (DL) combined with strategies like active learning and transfer
learning offers promising solutions to enhance weather prediction and forecasting
accuracy in Africa. By utilizing lightweight DL models, it is possible to achieve
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weather forecasts even in data-scarce and resource-constrained environments, ul-
timately aiding in better decision-making and resource management across the
continent.

2 Deep Learning for Weather Prediction

The non-linear behavior of meteorological data poses significant challenges for
weather prediction, even with state-of-the-art numerical models [3]. This com-
plexity has led researchers to explore emerging Artificial Intelligence (AI) ap-
proaches, which have demonstrated impressive performance in various fields [4].
Traditional parametric models, such as linear models, struggle with meteoro-
logical data due to their limited expressive power and inability to stack linear
operations for more abstract representations [5]. Non-parametric learners like
Gaussian kernels offer flexibility but are hindered by their reliance on local gen-
eralization and the exponential growth of input dimensionality.

Deep Learning (DL) methods address these challenges by stacking multiple
feature learning layers to form deep representations, enhancing both computa-
tional and statistical efficiency. Recent advancements have improved the repre-
sentation of inputs with fewer parameters, allowing for effective feature learning
using both labeled and unlabeled data. Transfer Learning (TL), a process within
DL, leverages learned features to apply knowledge from one domain to another
related domain, improving learning efficiency and effectiveness. This makes DL
particularly suitable for complex and dynamic fields like weather prediction.

Deep learning methods, especially convolutional neural network (CNN)-based
time series classifiers, have proven highly effective for extracting temporal and
spatial features from spatio-temporal weather data [7]. These methods offer
faster and more accurate predictions and can handle large, complex datasets
from weather satellites and IoT devices [8]. Unlike traditional models, DL do not
require extensive feature engineering, making them more adaptable and practical
for weather forecasting applications.

The flexibility and robustness of DL approaches make them well-suited for
the complexities of weather data, which often exhibit non-linear and chaotic be-
havior. DL models, leveraging distributed and sparse representations, can cap-
ture intricate data structures that traditional parametric and non-parametric
models struggle to represent effectively. This capability is crucial for processing
high-dimensional meteorological datasets, where capturing subtle patterns and
correlations can significantly enhance prediction accuracy.

DL’s superior feature learning capabilities allow for better representation and
understanding of weather patterns, leading to improved prediction accuracy and
reliability [9]. These techniques reduce the need for manual data preprocessing
and feature extraction, streamlining the forecasting process. Moreover, DL meth-
ods excel at learning from vast amounts of data, continually improving predictive
performance as more data becomes available. Their scalability ensures that fore-
casting systems remain efficient and effective even as data volumes grow, making
DL particularly beneficial for weather forecasting.
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3 Transfer Learning and Active Learning

To address the challenge of sparse training data in time series datasets, the
proposed model incorporates two primary DL techniques: Transfer Learning and
Active Learning.

TL allows the model to leverage pre-existing knowledge from a related source
task and apply it to the target task. This technique enhances the model’s ability
to generalize and perform well even with limited data by re-using model skills.
AL dynamically queries and selects the most informative samples to add to
the training set. It uses labeled data to provide critical information about class
labels or boundaries, while unlabeled data helps in understanding the base data
distribution. This iterative process improves the efficiency of the learning process
by focusing on the most useful data points.

Before delving into the specifics of these techniques, it is essential to define
the Time Series Classification (TSC) problem.

Definition 1. An univariate time series Ut = [x1, x2, ..., xT ] is an ordered set
of real values. The length of Ut is equal to the number of observable time-points
T.

Definition 2. A multivariate time series Mt = U1
t , U

2
t , ...., U

n
t consist of n ob-

servations per time-point with U i
t ∈ RT

Definition 3. A dataset D = (X1, Y1), (X2, Y2), ..., (XN , YN ) is a collection of
pairs (Xi, Yi) where Xi could either be Ut or Mt with Yi as its corresponding
label. For a dataset containing K classes, the label vector Yi is a vector of length
K where each element j ∈ [1,K] is equal to 1 if the class of Xi is j and 0
otherwise.

We can define Time Series Classification (TSC) as the task of mapping time-
based inputs to a probability distribution over a set of labels. This can be math-
ematically represented by the following equation:

Ct = f(w ∗ Ut−l/2:t+l/2 + b)|∀t ∈ 1, T (1)

C denotes the convolution result on a univariate time series Ut of length T with
a filter w of length l, a bias parameter b and a non-linear function f . Applying
several filters on a time series will result in a multivariate time series whose
dimensions are equal to the number of filters used. Using the same filter values
w and b in ConvNets its possible to find the results for all time stamps t ∈ [1, T ].
This is possible by using weight sharing that enables the model to learn feature
detectors that are invariant across the time array

4 Deep Transfer Active Learning

During target training, the model’s parameters are initialized using weights from
a previous task, represented as Θ ← ϑθ. After initializing the weights, a forward
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pass through the model is performed using the function f(θ, xi), which computes
the output for an input xi. The output is a vector of estimated probabilities for
xi belonging to each class. The prediction loss is then computed using a cost
function, such as the negative log likelihood. Using gradient descent, the weights
are updated in a backward pass to propagate the error. This iterative process
of forward pass followed by backpropagation updates the model’s parameters to
minimize the loss on the training data. During testing, the model is evaluated
on unseen data. A forward pass is performed on the new input, followed by
class prediction. The predicted class corresponds to the one with the highest
probability. For this, categorical cross-entropy is applied as the loss function,
denoted as:

L(y, ŷ) = −
N∑
i=1

yi log(ŷi) (2)

where yi is the true label and ŷi is the predicted probability for class i. This
loss function helps to measure the performance of the classification model by
comparing the predicted probabilities with the actual labels.

AL is used to select instances a model is most uncertain about to improve
learning efficiency. In uncertainty sampling, the model aims to identify and learn
from the most informative data points. Three primary metrics used to define un-
certainty are least confidence, sample margin, and entropy. To take consideration
of the entire output distribution, entropy is used as a metric which is defined as:

fu(x) = argmax
i
−
∑
i

P (yi|xi) logP (yi|xi) (3)

Here, P (yi|xi) is the posterior probability of instance xi belonging to class i. For
binary classification, the most uncertain instances are those with nearly equal
probabilities for both classes.

Besides uncertainty, considering the distribution of instances can enhance
AL performance. Instance diversity helps in selecting the most representative
samples, thus improving query performance and avoiding outliers.

The correlation measure assesses the pairwise similarities of instances. The
informativeness of an instance is determined by its average similarity to its neigh-
bors. For two instances xi and xj , the correlation measure fc is defined as:

fc(x) =
1

DU

∑
xj∈DU/xi

fc(xi, xj) (4)

The value of fc(xi) represents the density of xi in the unlabeled set. Higher
values indicate that an instance is closely related to others, while lower values
suggest outliers, which should be avoided for labeling.

To select the most informative and representative samples, a heuristic com-
bination of correlation and uncertainty measures is employed. The most effective
instance to label can be expressed as:

x̂ = argmax
i

(fu(x) · fc(x)) (5)
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This approach ensures that the selected samples are both uncertain and repre-
sentative, enhancing the learning process.

5 Results

Three datasets were used in the experiments namely: a) RAUS4 dataset contains
daily weather observations from various Australian weather stations for a period
of 10 years, b) KenCentralMet (Kenya Meteorological Department5 privately
acquired daily weather observations covering Central Kenya for a period of 3
years from 2012-2014 ) and c) MeteoNet6 a meteorological dataset developed
and made available by the French national meteorological service. For each of
the dataset, less than 20% of the labeled samples was used as the initial train-
ing set. We present comparison of the proposed DTAL method, as detailed in
the previous section, against: i) Random selection of data samples to query, iii)
QUIRE method inspired by the margin based active learning from the minimax
viewpoint with emphasize on selecting unlabeled instances that are both infor-
mative and representative [10], iv) DFAL method that selects unlabeled samples
with the smallest perturbation. The distance between a sample and its smallest
adversarial example better approximates the original distance to the decision
boundary [11], v) Core-Set non-uncertainty based AL method [12].

RAUS KenCentralMet MeteoNet
P R A P R A P R A

Random 81 80 79 64 67 62 89 85 91
DTAL 80 85 85 68 64 67 91 90 93
QUIRE 89 84 81 67 68 67 87 88 86
DFAL 83 82 80 60 62 64 91 88 93
Core-Set 79 83 84 65 65 68 90 91 91

Table 1. Experimental results with Precision P, Recall R and Accuracy A.

Table 1 shows that DTAL generally outperforms a bit other methods (except
QUIRE that is better with RAUS), especially in terms of precision and recall,
demonstrating the effectiveness of the proposed hybrid strategy in selecting the
most valuable training samples from the distribution. However, performance
varies depending on the dataset, highlighting the importance of dataset charac-
teristics in the efficacy of active learning methods and demonstrates that results
can be equivalent even with less samples.

6 Conclusion

This paper demonstrates the efficacy of lightweight deep learning, integrating ac-
tive and transfer learning, for weather prediction in Africa. Our hybrid Transfer
4 https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package
5 https://meteo.go.ke/
6 https://www.kaggle.com/datasets/katerpillar/meteonet
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Active Learning method significantly enhances forecasting accuracy with min-
imal data, using only small portion of the training samples compared to ex-
isting methods. Despite challenges of data scarcity and limited computational
resources, our approach shows promise in providing good weather forecasts es-
sential for effective decision-making and resource management in Africa. Future
work will focus on refining these techniques and validating their practical benefits
in real-world applications.
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