
International Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Parallel Construction of Random Forest on GPU

Kennedy Senagi · Nicolas Jouandeau

Received: date / Accepted: date

Abstract There is tremendous growth of data generated from different industries,
i.e., health, agriculture, engineering etc. Consequently, there is demand for more
processing power. Compared to computer processing units (CPU), general-purpose
graphics processing units (GPUs) are rapidly emerging as a promising solution to
achieving high performance and energy efficiency in various computing domains.
Multiple forms of parallelism and complexity in memory access has posed a chal-
lenge in developing Random Forest (RF) GPU-based algorithm. RF is a popular and
robust machine learning algorithm. In this paper, coarse-grained and dynamic par-
allelism approaches on GPU are integrated into RF(dpRFGPU). Experiment results
of dpRFGPU are compared with sequential execution of RF(seqRFCPU) and paral-
lelised RF trees on GPU(parRFGPU). Results show an improved average speedup
from 1.62 to 3.57 of parRFGPU and dpRFGPU respectively. Acceleration is also ev-
ident when RF is configured with an average of 32 number of trees (NoTs) and above
in both dpRFGPU and parRFGPU on low dimensional datasets. Nonetheless, larger
datasets save significant time compared to smaller datasets on GPU (dpRFGPU saves
more time compared to parRFGPU). dpRFGPU approach significantly accelerated
RF trees on GPU. This approach significantly optimized RF trees parallelization on
GPU by reducing its training time.

Keywords Machine Learning · Random Forest · GPU · Dynamic Parallelism ·
Coarse-Grained

Kennedy Senagi
International Centre of Insect Physiology and Ecology, Kenya,
E-mail: ksenagi@icipe.org

Nicolas Jouandeau
Université Paris8, Laboratoire d’informatique avanceé de Saint-Denis, France,
E-mail: n@up8.edu



2 Kennedy Senagi, Nicolas Jouandeau

1 Introduction

To-date, computing power has grown rapidly to a point where Moore’s Law of
doubling transistor counts every two years, coined in the 1960’s, is no longer prac-
tical. Computer systems that have multicore CPU and many-core GPU that have
brought enormous computing power to laptops and clustered computers. GPU has
been proven to offer unprecedented computing power compared to CPU. It is there-
fore inherent that software engineers should come-up with better and more efficient
ways of utilizing readily available huge computing power offered by GPU to acceler-
ate software applications. Ideally, with the capabilities of GPU, performance of soft-
ware should be better. However, software engineers fail to harness full potential of
GPU due to several reasons including complexity in parallelism and memory [1, 2].

RF is a popular and robust machine learning algorithm which is applied in solv-
ing a wide array of research problems including agricultural, bioinformatics etc [9]
[19]. RF is an ensemble classifier. Logically, RF builds independent diverging trees
that have minimal data dependencies1. Moreover, in decision making, the majority
class in each tree is computed independently; the modal class in all decision trees is
computed after all trees have been built and majority class found [3]. This makes it
an ideal algorithm for GPU parallelization.

Parallelizing RF on GPU has been a challenge due to various bottlenecks includ-
ing memory access design, parallelism, synchronization between thread2 and warp3

divergence. Consequently, this has lead to poor utilization of GPU computing re-
sources resulting to poor computation time among other computing problems [2, 20].
This research presents coarse-grained and dynamic parallelism approaches to par-
allelizing RF trees on GPU on low dimensional datasets. Experiment results show
that these approaches significantly accelerated parallelization of trees in RF on GPU.
Ultimately, this can significantly reduce time of training RF algorithm on GPU.

2 Related Works

Wang et. al. [27] adopted three scheduling decisions: prioritized execution of the
child thread blocks, bound them to the stream multiprocessors (SMXs) occupied by
their parent thread blocks and maintained workload balance across compute units.
Experiments showed an average of 27% performance improvement over the baseline
round-robin thread block scheduler, commonly used on modern GPUs [27].

Rich and Alexandru [15] did an empirical evaluation of supervised learning on
high dimension data. Performance evaluated was done using accuracy (ACC), Area
under the ROC Curve (AUC), and squared error (RMS). They also studied the ef-
fects of increasing dimensionality on SVM (LaSVM kernel and RBF kernels using

1 Data independence in RF is facilitated by bagging. In bagging, each tree is built from an independent
subset of data. Each subset of data is generated by randomly sampling data from the original dataset with
replacement [3].

2 This is caused by irregular execution paths of threads in a warp.
3 This is caused by irregular execution paths of warps in a block.



Parallelizing Random Forest Trees on GPU 3

stochastic gradient descent), ANN, Logistics Regression and Nave Bayes (NB) algo-
rithms. AUC performance metrics showed that RF was a clear winner, followed by
k-NN.

Similarly, Manuel et. al. [5] evaluated 179 classifiers fetched from 17 families,
namely: discriminant analysis, multiple adaptive regression splines, Bayesian, rule-
based classifier, boosting, ANN, bagging [16] stacking, RF and other ensembles,
SVM, decision trees, generalized linear models, logistic and multinomial regression,
k-NN, partial least squares and principal component regression and other methods.
Parallel RF, a version of RF, turned out to be the best classifier when implemented in
R and accessed without caret [5].

RF and gradient boosting machine (GBM) predictive algorithms were used to de-
scribe and predict Foodborne pathogens in poultry farming environments. Nawar and
Mouazen [6] tested GBM, RF and ANN on soil information datasets. Their results
showed that RF and ANN prediction models gave almost similar results but better
than GBM on spatial soil information [6].

The accurate prediction of coal temperature played a vital role in preventing and
controlling spontaneous combustion of coal in coal mines. RF and SVM were intro-
duced and compared in predicting coal spontaneous combustion based on the In-situ
monitoring data. Results showed that RF was more robust and less sensitive to its
parameters [17].

Vouzis and Sahinidis [19] created multiple kernels that executed different phrases
of Basic Local Alignment Search Tool for Protein (BLASTP) sequence. A fine-
grained mapping approach was adopted by using warps of threads to accelerate one
sequence alignment to leverage the abundant parallelism offered by GPU.

Zhang et. al. [20] proposed cuBLASTP that improved performance of BLASTP
on GPU. cuBLASTP addressed the irregular execution paths caused by divergence
and irregular memory access. They integrated decoupling and binning-sorting-filtering.
These approaches optimized cuBLASTP on GPU [20].

Wen et. al. [21] came up with run-length encoding compression and thread/block
workload dynamic allocation, and reusing intermediate training results for efficient
gradient computation. Gradient Boosting Decision Trees (GBDTs) executed faster on
GPU. Experiments show that GBDTs executed 10 to 20 times faster than sequential
version of XGBoost and had a speedup of 1.5 to 2.0 over a 40 threaded XGBoost on
20 CPU cores [21].

Search queries in a B+ tree are data-parallel, therefore, mapping them onto Ac-
celerated Processing Unit (APU) (CPU+GPU) was inefficient. The coarse-grained
approach led to better utilization of the available memory bandwidth in APU. Their
parallelism in tree search executed multiple searches in parallel to optimize the Single
Instruction Multiple Data (SIMD). This approach was 4.9x faster on the best case and
2.5x on average compared to a six-threaded, hand-tuned, Streaming SIMD Extension
(SSE) optimized and CPU implementations [22].

Chen et. al. [23] presented a hybrid Parallel Random Forest (PRF) algorithm for
big data on Apache Spark platform. It combined data-parallel and task-parallel op-
timization. It was trained and tested on different datasets in UCI and other projects.
Experiment results showed PRF algorithm had a better accuracy and scalability com-
pared to algorithms implemented by Spark MLlib [23].



4 Kennedy Senagi, Nicolas Jouandeau

Generally, RF is a robust and widely used ML algorithm. GPU is a highly threaded
platform that software engineers can parallelize algorithms to achieve better time of
execution. However, while programming on GPU, many algorithms face several chal-
lenges including divergence/irregular memory access and execution path [20, 21].
Parallelizing RF algorithm of GPU faces the similar challenges [13, 23]. This re-
search integrates dynamic parallelism and coarse-grained approaches to improve time
of execution of RF on GPU.

3 The Graphical Processing Unit

The GPU also known as graphics accelerator card, is a specialized electronic
circuit designed to rapidly manipulate and alter memory to accelerate creation of im-
ages in a frame buffer intended for output on a display. Figure 1 and 1 show simple
representations of GPU architecture and threads accessing different memories. GPU
contains numerous (e.g. thousands) cores that are grouped into streaming multipro-
cessors (SMs). In the Compute Unified Device Architecture (CUDA) capable GPU,
threads are grouped into blocks which are also called thread blocks. A number of
SMs form one block; this number varies from one CUDA GPU generation to another.
Each SM has a number of Stream-Processors (SPs) that share control logic bundled in
the Special Function Units (SFU), Load(LD)/Store(ST) units and cache (L1). At any
given timestamp, an SM execute instructions of one thread block. Accessing GPU’s
global memory is an expensive computation, therefore, accessing GPU global mem-
ory should be avoided as much as possible. Moreover, irregular accesses to global
memory is even more expensive due to the small number of cache lines.

GPU threads are organized in blocks, and blocks organized in grids. The number
of blocks per grid are limited by streaming multiprocessors. The number of threads
in a block vary, e.g. 512 or 1024. CUDA uses Single Instruction Multiple Thread
(SIMT) architecture to manage and execute threads. It groups threads into a unit
called warp. A warp is the smallest work unit of GPU. In the warp, all threads execute
the same instruction in parallel. Threads in the same block share the same memory
called shared memory while all threads in a grid share the same memory called global
memory. Therefore, to optimally utilize GPU resources, algorithms need to have a
good parallelism and memory access patterns. Moreover, synchronization overhead
between threads and warp divergence should be reduced to further optimize paral-
lelism on GPU. Better memory usage can be improved by reducing irregular memory
access in global memory. Also excessive or unorganized use of shared memory can
cause bank conflicts resulting to re-execution of memory instructions which can de-
grade GPU performance. Generally, GPU are built for throughput rather than latency.
Throughput measures the amount of work done per a given period of time while
latency is the time taken from the start to the end a process [2].

Today, GPUs are used for non-graphics applications. The platform is often re-
ferred to as general-purpose graphics processing units, GPGPU. The GPGPU is rapidly
emerging as a promising solution to achieve high performance and energy efficiency
in various computing domains ranging from embedded to big data computing [1, 28].



Parallelizing Random Forest Trees on GPU 5

Fig. 1: GPU architecture of streaming multiprocessors

Fig. 2: Threads organized in blocks accessing different memories in the GPU

Compared to CPUs, GPUs are tolerant to latency and have high throughput. GPUs
have a better handling of data parallelism while CPUs have a better handling of
task parallelism, CPUs have multi-threaded cores while GPUs have single-instruction



6 Kennedy Senagi, Nicolas Jouandeau

multiple threaded4 (SIMT) cores, and GPU support more threads than CPU. These
make GPUs very powerful computers compared to CPUs [1, 4, 21].

In practice, parallelizing algorithms on GPU offers better performance than CPU.
However, GPU performance has been limited due to various reasons including: thread
divergence, unsuitable access pattern in memory and load imbalances. These makes
it difficult to find performance bottlenecks on GPU architectures. It is therefore im-
portant to use good performance evaluation tools in order to find performance bottle-
necks and further guide in performance optimization.

4 The Random Forest Algorithm and it’s Implementation

4.1 Random Forest Description

RF is an ensemble classifier introduced by Leo Breiman [3]. Ensembles use the
divide-and-conquer approach when learning from a dataset. Growing ensembles of
trees (by generating random vectors for each tree) and letting them vote for the most
popular class has resulted to significant improvements in classification accuracy.

Algorithm 1 outlines an overview of RF. The principle idea behind RF is to
build many decision trees from the same dataset {X ,Y} using bootstrapping and
randomly sampled variables to create trees with variations (randomization), where
X ∈ (x1,x2,xn) and Y is the label. The dataset (X ,Y ) is then split into training (Xt ,Yt)
and test (Xs,Ys) datatsets. Bootstrapping generates new datasets B1,B2, ..,Bn by ran-
domly sampling examples from the training (Xt ,Yt) data uniformly with replacement.
These bootstraps are then used for constructing decision trees (DT) which make-up
a forest (RF) i.e. (RF ∈ DT1,DT2, ...,DTN) where each (DTi ∈ Bi). Each tree is con-
structed by the principle of divide-and-conquer. That is, in each tree, starting at the
root node, each attribute is recursively split. An attribute is picked (randomly or hav-
ing the highest entropy) and split. The best split value in an attribute is evaluated using
a splitting criteria e.g. information gain or Gini index. The splitting criteria evaluates
how good an attribute can be separated into homogeneous classes (considering the
target variables). When building a tree, splitting a nodes is done recursively till when
the leaf node is arrived at. The leaf node is a terminal node and its information cannot
be split further. The leaf node gives the class attribute that is most common occur-
ring. Each tree is grown to the largest extent possible. Binary tests are associated
with each internal node. Test data (Xs,Ys) is passed from the root to the leaves. Each
of the leaves nodes contain a predictor label ŷ. In classification and regression trees
(CART), we assume y = f (x) for some unknown function f , the goal of learning is
to estimate the function f given a labeled training set, and to make predictions us-
ing ŷ = f̂ (x). In RF, the predictor label ŷ at the leaf is either the average value of Y
observations in the training set associated to that leaf (regression) or the modal/major-
ity value of Y (classification). This forms the basis of accuracy performance metrics
evaluation. During bootstrapping, the randomness minimizes correlation while main-
taining strength. The main principle behind RF is to build a group of weak learners

4 Single-instruction multiple threaded is execution where a set of instructions are dispatched in a multi-
threaded manner.



Parallelizing Random Forest Trees on GPU 7

to form a strong learner [3]. RF is a popular and robust machine learning algorithm
and has been used to solve diverse prediction problems [9] [19].

Algorithm 1 Random Forest [3]

Require: {X ,Y} ∈ {(x1,y1), ...,(xn,yn)},cols ∈ (x1, ...,xn),rows ∈ (r1, ...,rn)
1: cols← φ . Expected number of columns in each bag
2: rows← β . Expected number of rows in each bag
3: split← λ . Ratio of train to test sets
4: NoT s← θ . Expected number of trees to be built
5: {Xt ,Yt},{Xs,Ys}← SPLITDATASET({X ,Y},split) . Split to training {Xt ,Yt} and test {Xs,Ys} sets
6: procedure RANDOMFOREST({Xt ,Yt},{Xs,Ys},NoT s,rows,cols)
7: Bags← BAGGING({Xt ,Yt},NoT s,rows,cols)
8: accuracy_avg← 0
9: for each bag in Bags do

10: tree← CONSTRUCTTREE(bag) . Each tree constructed from each bag
11: accuracy← TESTING(tree,{Xs,Ys})
12: accuracy_avg← accuracy_avg+accuracy
13: accuracy_avg← accuracy_avg/NoT s

4.2 Random Forest Implementation

RF programming on GPU was done in CUDA C [32]. Let us describe the modules
developed to realize RF.

4.2.1 Bagging

Bagging is also known as bootstrap. The bagging module generated b bags/ boot-
straps from the original dataset. In each bag, x records were randomly generated with
replacement from the original database. Nonetheless, in each bag, y features were
randomly sampled. Note that, in bagging a user can configure number of bags (b),
number of random records in each bag (x) and number of random features (y). Bag-
ging brings about data independence which is necessary for constructing independent
diverging trees. This reduces thread synchronization issues that reduce efficiency.

4.2.2 Trees Construction: Feature Selection, Splitting and Pruning

The most popular algorithms for evaluating a split criteria are ID3 and its succes-
sor C4.5. Compared to ID3 algorithm, C4.5 has a better handling of pruning, missing
variables and works well with both discrete and continuous data [34]. This research
implemented ID3 in trees construction because it was simple.

Entropy of labels, E(y), was calculated using Equation 1, where c is the number
of unique labels in the feature i.e. classes. If variables in the feature are completely
homogeneous/pure, the entropy is zero. And if they are equally divided, the entropy
is one. Considering Equation 1, entropy was calculated for each feature E(y,x) us-
ing Equation 2, where P(c) is probability of a class in the labels and E(c) is the



8 Kennedy Senagi, Nicolas Jouandeau

entropy of the class(es) in the labels. Information Gain, Gain(y,x), for each feature
was calculated using Equation 3. Gain(y,x) values for all features were then arranged
in descending order. From the array, a feature was then picked for splitting one by
one. The first to be split at the root node was the most impure i.e. heterogeneous.
Technically, each bag discussed in previous subsection was used to construct a tree.

E(y) =
c−1

∑
i=0

(−pi log2 pi) (1)

E(y,x) = P(c)E(c) (2)

Gain(y,x) = E(y)−E(y,x) (3)

Gini index split criteria was recommended by Breiman [3] in splitting features.
Gini index measures the impurity levels of information. The attribute that provides
the largest reduction of impurity is chosen to split the node. A split point/value was
picked randomly and its Gini index calculated using Equation 4. Average Gini index
was based on the left(xL) and right (xR) splits using Equation 5. The best split was
calculated using the Non-Deterministic Algorithm explained in [9]. In this case, 10%
of random split points were sampled and thresholds of Gini(y,x)== 0 were evaluated
to stop further splitting. After splitting, xL and xR were sent to the left and right nodes
respectively. If GI(xL) == 0 or GI(xL) == 0, i.e. pure class, the respective node was
marked as a leaf otherwise the node was split. A node was not split further if it was
marked as a leaf or if maximum depth of splitting a feature or tree was reached. If a
tree reached its maximum depth with a node not marked as leaf, i.e. not a pure node,
the class with the highest frequency was selected as the final class label, and the node
was marked semi-leaf.

GI(x) = 1−
i−1

∑
i=0

(p2
i ) (4)

Gini(Average) = pxL ×GI(xL)+ pxR ×GI(xR) (5)

Furthermore, post-pruning measures were integrated. In post pruning, as a tree grows,
out-of-bag (OOB) generalization error is evaluated and tracked before splitting a
node. If OOB increased in two sequential splits, further splitting was stopped and
the node was evaluated as a semi-leaf. The same stopping criteria was used when a
node got to the maximum tree depth.

4.2.3 Testing

In our implementation a node was marked as with a leaf or semi-leaf and had
a label ŷ. Constructed trees were evaluated using accuracy. To calculate accuracy,
unseen data was run from the root to the leaves and semi-leaves of all trees. Each
record of the unseen data had a label y. Each leaf and semi-leaf of each trees was
evaluated with, ŷ = y, and accuracy calculated using Equation 6, where n was the
number of nodes marked leaf and semi-leaf. All records (of unseen data) accuracies
were averaged to give each tree’s overall accuracy. Majority vote of all the trees was



Parallelizing Random Forest Trees on GPU 9

taken as RF overall final accuracy. Moreover, the time taken to train and test RF, i.e.
time of execution, was evaluated using Equation 7 and recorded.

acc(y, ŷ) =
1
n

n−1

∑
i=0

1(ŷi = yi) (6)

Time o f Execution = Time(End)−Time(Start) (7)

5 The Granularity Concept on GPU

Granularity is the ratio of computation to communication in a parallel program. A
grain is the smallest amount of work to computer. Tasks with fewer computations are
referred to as fine-grained tasks while tasks with many computations are referred to as
coarse-grained tasks. If a task is too fine, scheduling and mapping overhead is large,
and consumes a significant amount of total execution time. Therefore, decomposition
procedures should be employed to find a good balance between number of tasks and
their granularity [35].

In a program, parallel execution can be performed at different levels: instruction,
statement, loop and/or function. These levels result to different task granularities.
For instance, a fine grained tasks can result when a small number of instructions or
statements are consolidated, a coarse-grained task comes-about when functions are
executed to form a significant amount of computations, while a medium-grained tasks
are typical at the loop level since each loop iteration consists of several statements
[35].

Optimization of an algorithm is highly dependent on how the algorithm and the
application environment are structured [22, 37]. Essentially, thread blocks implement
coarse-grained scalable parallelism, while lightweight threads (within a block) im-
plement fine-grained parallelism. This characteristic makes it easy to implement in-
dependent data parallelism in algorithms [38].

6 The Dynamic Parallelism Concept on GPU

Dynamic Parallelism [36] is a new feature provided in the latest architectures
of GPU cards that have compute capability5 3.5 and higher, such as the Kepler and
Maxwell architectures. Dynamic parallelism allows CUDA kernel (parent) to create
new kernels (children) within the device(GPU). The parent kernel can create children
kernels, and the children can create other grandchildren kernels, and so on asyn-
chronously. Nonetheless, dynamic parallelism allows synchronization between par-
ent and child kernels, i.e, a child CUDA kernel can be called from a parent kernel and
then synchronizes on completion of that child kernel. Unlike recursion, dynamic par-
allelism has the ability to create new work for itself in the device. This reduces work
spent in transferring data and execution control between the device and the host. It’s
important to note that dynamic parallelism launches cannot target other GPU device

5 Compute capability determines the general specifications and available features of a GPU.



10 Kennedy Senagi, Nicolas Jouandeau

in a multi-GPU system. Dynamic parallelism programming can be done in platforms
such as OpenCL or CUDA [27, 33].

This research prototyped experiments in CUDA. We implemented RF in C lan-
guage and parallelization with CUDA on GPU and tested our algorithms on GeForce
GTX 1080 and profiled our programs using nvprof on GPU. Performance was evalu-
ated using speedup [11, 12, 18].

7 Custom Random Forest Implementation for GPU

Implementing RF for GPU architecture required a different programming ap-
proach considering GPU has device, host, and kernels to be configured. Moreover,
GPU has different architecture specification, i.e. different numbers of threads per
block, different number of blocks per grid, grids and memory capabilities. This study
used GeForce GTX 1080, whose dimension was 1024 x 1024 x 64, with a maximum
threads per block of 1024, total global memory of ≈ 8.5 GB, ≈ 50 KB of shared
memory per block and ≈ 65 KB per register.

Inspired by [14, 12, 31], this research implemented variants of RF executions
from scratch, i.e., sequential execution on CPU, parallel execution on GPU and dy-
namic parallelism combined with coarse grained execution on GPU. The implemen-
tations are explained below:

i) Sequential execution of RF on CPU (seqRFCPU) - RF trees were implemented
to run sequentially on CPU considering principles outlined by Breiman [3]. The
sequential RF algorithm implementation is explained in this section and is also
outlined in Algorithm 1.

ii) Parallelizing RF trees on GPU (parRFGPU) - RF tree was developed on GPU
considering principles outlined by Breiman [3]. However, kernels were launched
to construct RF trees in parallel on GPU, as outlined in Algorithm 4 and explained
in this section. Time of execution results were recorded and used in calculating
speedup using Equation 8. Note that parallelize RF on CPU was not implemented
since this research was solving RF GPU parallelization challenges.

iii) Dynamic parallelism in RF (dpRFGPU) - This was our core contribution. RF
tree was constructed based on Breiman [3] principles. In Sections 6 and 5, this
research noted that coarse-grained and dynamic parallelism are promising ap-
proach in parallelizing algorithms. We did not come across any literature cover-
ing coarse-grained dynamic parallelism of RF trees on GPU. To integrate these
concept in RF, device-side nested kernels on GPU were launched to build trees
dynamically, simultaneously and independently. Coarse-grained approach was in-
corporated in bagging by increasing work done by each thread and each thread
built each tree independently. Details are explained in this section and in Algo-
rithm 5. Time of execution results were recorded and used to calculate speedup
using Equation 8.

Algorithm 2 presents RF learning algorithm [3] in a summarized way; where
NoT s is the expected number of trees, NoRs is the number of rows in each bag and
NoCs is the number of columns in each bag. The initial dataset DS∈{(x1,y1), ...,(xn,yn)}



Parallelizing Random Forest Trees on GPU 11

is divided in a training dataset DStrain and a testing dataset DStest , defined by the ratio
λ of train to test sets.

Algorithm 3 presents the Random Forest decision given by taking the majority
vote of each tree decision. The acc value computed is the accuracy value regarding to
all of the samples of DStest . The core of the Random Forest desicion process, defined
for a single sample x, is only between lines 3 and 7.

In both parRFGPU (Algorithm 4) and dpRFGPU (Algorithm 5), dataset were
loaded in global memory and linearized to 1D array. In parRFGPU, a kernel was
launched to transfer the linearized data and other configuration parameter to the de-
vice. In the device, the linearized data was reorganized back to 2D array, dataset split
to training and test sets, bagging functions called and thereafter, each tree built simul-
taneously and independently. Each thread built a tree. However, in dpRFGPU, after
linearizing data to 1D in host and the parent kernel was launched to initialize dynamic
parallelism. Similarly, the parent kernel transferred the linearized data and other con-
figuration parameter to the device. However, in the device dataset was split to training
and test sets then children kernels launched to create new work and build threads of
trees dynamically, simultaneously and independently. Note that only one parent ker-
nel was launched in the host. To further optimize the parent kernel in dpRFGPU,
a coarse-grained approach was integrated. In the coarse-grained approach, amount
of work of each thread was increased by ensuring that each thread (in each block)
built its own tree independently with its own data (generated by bagging within the
children kernels). In implementations of Algorithm 4 and 5, synchronization barriers
were not introduced, therefore, trees were constructed and tested to completion, in
parallel, without waiting for each other.

RF recorded significant accuracies between 2 and 512 NoTs [8, 9, 10]. Consider-
ing this, this study built RF up-to 1024 NoTs, meaning a maximum of 1024 threads
were required. This research invoked one thread per block, to build trees indepen-
dently and simultaneously. This could also reduce challenges of warp divergence,
memory overload or leakages in the blocks, its registers or cache. Moreover, to re-
duce frequency of accessing global memory, we fetched the linearized data once from
global memory, converted it to 2D and passed it the bagging function. Through bag-
ging, a subset of the dataset was used to build a tree, i.e., data parallelism. Bags were
loaded from the global memory since they could not fit in shared memory especially
for huge datasets. Data parallelism was essential in parallelizing algorithms on GPU
i.e. it avoided memory and thread synchronization overheads which are catastrophic
in parallelism [33].

Algorithm 2 Random Forest learning

Require: DStrain,NoT s,NoRs,NoCs
1: Bags← BAGGING(DStrain,NoT s,NoRs,NoCs)
2: C ← /0
3: for each bag in Bags do
4: tree← CONSTRUCTTREE(bag) . Each tree constructed from each bag
5: C ← C + tree . Each tree is added in the forest
6: return C



12 Kennedy Senagi, Nicolas Jouandeau

8 Experiment Set-up

Section 7 discussed various implementations of RF: CPU sequential execution
(seqRFCPU), GPU parallelization (parRFGPU) and GPU coarse-grained dynamic

Algorithm 3 Random Forest decision

Require: DStest ,C
1: acc← 0
2: for each (x,y) in DStest do
3: D ← /0
4: for each tree in C do
5: yi← DECISION(x, tree) . Each tree gives a sub-decision
6: D ←D + yi . Each sub-decision is collected in a set
7: ŷ←MAJORITY(D) . The final decision is the most choosen sub-decision
8: If ŷ = y then acc← acc+1
9: acc← acc/SIZEOF(DStest)

Algorithm 4 Random Forest with Trees Parallelized on GPU

1: T ← 2,4,8,32,64,128,512,1024
2: DS← LOADTOGLOBALMEMORY()
3: ds← LINEARIZEDATASET(DS)
4: rows← x . Expected number of rows in each bag
5: cols← y . Expected number of columns in each bag
6: split← z . Ratio of train to test sets
7: for each θ in T do
8: nblocks← θ . Equivalent to number of trees
9: nthreads← 1

10: procedure KERNEL_RF<<< nblocks,nthreads >>>(ds,rows,cols,split)
11: ds2D← CONVERTTO2D(ds,rows,cols)
12: (ds_train,ds_test)← SPLITDATASET(ds2D,split)
13: bag← BAGGING(ds_train)
14: tree← CONSTRUCTTREE(bag)
15: tree_accuracy← TESTING(tree,ds_test)

Algorithm 5 Random Forest Coarse-Grain and Dynamic Parallelism of Trees on GPU

1: T ← 2,4,8,32,64,128,512,1024
2: DS← LOADTOGLOBALMEMORY()
3: ds← LINEARIZEDATASET(DS)
4: rows← x . Expected number of rows in each bag
5: cols← y . Expected number of columns in each bag
6: split← z . Ratio of train to test sets
7: for each θ in T do
8: nblocks← θ . Equivalent to number of trees
9: nthreads← 1

10: procedure PARENT_KERNEL_RF<<< nblocks,nthreads >>>(ds,rows,cols,split)
11: ds2D← CONVERTTO2D(ds,rows,cols)
12: (ds_train,ds_test)← SPLITDATASET(ds2D,split)
13: procedure CHILDREN_KERNELS_RF<<< nblocks,nthreads >>>(ds_train)
14: bag← BAGGING(ds_train)
15: tree← CONSTRUCTTREE(bag)
16: tree_accuracy← TESTING(tree,ds_test)



Parallelizing Random Forest Trees on GPU 13

parallelism (dpRFGPU). This research noted that high dimensional datasets were
cumbersome to configure and execute in dynamic parallelism probably due to the
high number of asynchronously children threads generated which created numerous
nested deep decision trees in RF. Therefore, implementations were tested on four low
dimensional datasets6 collected from UCI Machine Learning [29] namely: EEG Eye
state (14 attributes and 14980 records), Skin Segmentation (4 attributes and 245057
records), Iris (4 attributes and 150 records) and Statlog(Shuttle) (9 attributes and
58000 records). Experiments were run on CPU (Intel(R) Xeon(R) CPU E5-46100
@ 2.40GHz) and GPU (GeForce GTX 1080). On GPU experiments were profiled
using nvprof [30]. Experiments were prototyped in CUDA. RF was implemented in
C language.

Performance of algorithms on GPU were evaluated using speedup, described
in Equation 8, where tseq is time recorded in sequential execution and tpar is time
recorded in parallel execution [33].

speedup =
tseq

tpar
(8)

9 Results and Analysis

Figure 3 shows a line graph of time of execution against NoTs across four datasets
when RF trees were executed sequential on CPU. Time of execution of RF when
training all datasets apart from Iris increased steadily. Time of execution of Iris in-
creased slowly. RF required more time to train Statlog (Shuttle) dataset followed by
Skin Segmentation, EEG Eye State then Iris. This could be due the size of the dataset;
Statlog (Shuttle) was the largest and Iris the smallest. Larger datasets required more
computation time. This resulted to change in time of execution to be more signifi-
cant compared to smaller datasets. It was also observe that, increase in NoTs when
training RF increased time of execution linearly. Training more trees required more
CPU time leading to execution time growing linearly, perhaps, there was also little
interference from Inter-Process Communication (IPC) within the processes.

Figures 4 and 5 contain line graphs of time of execution(sec) against NoTs across
of four datasets of parRFGPU and dpRFGPU respectively. Generally, the lines rise
slowly. These results inform us that dpRFGPU had a shorter time of execution com-
pared to parRFGPU at all NoTs instances. In dpRFGPU, with the coarse-grained
RF, dynamic parallelism created new work and build trees dynamically and simul-
taneously. Dynamic parallelism could have also reduced processor’s idling time to
process more work. These made dpRFGPU execute faster than parRFGPU. More-
over, time of execution rise slowly in both parRFGPU and dpRFGPU. Normally, it
is expected that time of execution should reduce with the same magnitude as the
processors are increased linearly, for instance, if the processors are doubled, time of
execution to be reduced by half. But this was not the case because some time was

6 The selected datasets had a variety of characteristics (e.g. dimensionality and number of records) that
could reduce biasness in the experiments. These datasets also worked well with the program prototypes
this research developed for experiments.



14 Kennedy Senagi, Nicolas Jouandeau

Fig. 3: Time of execution (sec) against number of trees across four datasets - sequen-
tial execution of RF on CPU

consumed in IPC. At fewer NoTs, time of execution rose sharply then slowed down.
This could be due to smaller NoTs require lesser IPC while larger NoTs require more
IPC.

Speedup, calculated using Equation 8, was used to evaluate acceleration of par-
RFGPU and dpRFGPU configured with different NoTs. The speedup values against
NoTs for parRFGPU and dpRFGPU were plotted in Figures 6 and 7 respectively.
In both bar graphs, for all the datasets, speedup went down slightly then rose moder-
ately. Basically, speedup informs us if a problem is accelerated or not. Acceleration to
a problem is realized if, speedup > 1. Generally, in both parRFGPU and dpRFGPU
shown in Figures 6 and 7 respectively, it was evident that acceleration was realized
when RF was configured with 32 NoTs and above. We would expect parRFGPU
and dpRFGPU to accelerate RF when tuned with the different NoTs, but this was
not the case below 32 NoTs. When GPU parallelizations were profiled, when a ker-
nel was launched, time was wasted due to moving data between the host and device.
This could be the reason behind parRFGPU and dpRFGPU not accelerating below 32
NoTs threshold. However, above the threshold, besides time wasted in sending data
between the host and device, dpRFGPU and parRFGPU harnessed GPU computing
power and performed better.

Moreover, Figures 8 and 9 illustrate the rate of change of speedup against different
NoTs for parRFGPU and dpRFGPU. Generally, for both parRFGPU and dpRFGPU,
at the beginning, rate of change of speedup was at the negative. Then there was a
significant change to the positive, rose a little bit, then went down moderately. At 4
to 8 NoTs, there was a significant rate of change in speedup. At the 16 and 64 NoTs,
both parRFGPU and dpRFGPU had maximum rates of change in speedup, thereafter,



Parallelizing Random Forest Trees on GPU 15

Fig. 4: Time of execution(sec) against number of trees across four datasets - paral-
lelized RF on GPU

Fig. 5: Time of execution (sec) against number of trees across four datasets - dynamic
parallelism of RF on GPU

rates of change in speedup slowed down. The significant change of rate of speedup to
the positive could signify GPU’s range of breaking from time wasted when data was
transferred between the host to the device. Thereafter, the slowing down of change in



16 Kennedy Senagi, Nicolas Jouandeau

acceleration could be due to increase in IPC within the threads when more number
of trees are parallelized. The rate of change in acceleration slowed down meaning
increase in NoTs did not improve the speed of accelerating RF trees when parallelized
on GPU. However, in parRFGPU, as seen in Figure 8, a negative change in speedup
is observed at 16 NoTs in Iris, EEG Eye State and Statlog (Shuttle) datasets. While
in dpRFGPU as shown in Figure 9, there was a negative change in acceleration at
16 NoTs in Statlog (Shuttle) dataset. The negative change in accelerations came at a
time when the GPU is about to experience speedup, as we earlier observed in Figures
6 and 7, in both parRFGPU and dpRFGPU respectively. Probably the negative rate
of speedup signified breakpoint to acceleration on GPU.

Fig. 6: Speedup against number of trees across four dataset - Parallelized RF on GPU

Table 1 contains average speedups for parRFGPU and dpRFGPU. From our re-
search prototypes and outcomes, a user training RF using parRFGPU and dpRFGPU
can experience approximate 1.62 and 3.57 accelerations respectively.

Table 1: Average speedup results

Dataset Average Speedup
parRFGPU dpRFGPU

Iris 1.54 3.53
EEG Eye State 1.50 3.48
Statlog (Shuttle) 1.92 3.94
Skin 1.63 3.41
Averages 1.62 3.57



Parallelizing Random Forest Trees on GPU 17

Fig. 7: Speedup against number of trees across four dataset - Dynamic Parallelism of
RF on GPU

Fig. 8: Rate of change in speedup across four datasets - parallelized RF on GPU

Table 2 shows time a user could have saved when training different datasets
at worse case scenario (1024 number of trees), compared to sequential execution.
Generally, dpRFGPU saved more time than parRFGPU. Dynamic parallelism and
course grained approaches utilized GPU kernels better making dpRFGPU perform



18 Kennedy Senagi, Nicolas Jouandeau

Fig. 9: Rate of change in speedup across four datasets - dynamic parallelism of RF
on GPU

better than parRFGPU. Moreover, parRFGPU and dpRFGPU saved significant time
on relatively larger datasets compared to smaller datasets. Meaning parRFGPU and
dpRFGPU approaches were better for larger datasets that require more throughput
and latency.

Table 2: Worse case time evaluations of parRFGPU and dpRFGPU compared to se-
quential execution on CPU at 1024 number of trees.

Time (hours) Improved
µ Time (hours) of Execution Compared to seqRFCPU

Dataset seqRFCPU parRFGPU dpRFGPU parRFGPU dpRFGPU
Iris 0.155 0.046 0.013 0.109 0.142
EEG Eye State 0.997 0.301 0.084 0.697 0.913
Statlog (Shuttle) 399.336 84.289 30.934 315.047 368.402
Skin 432.196 108.085 36.486 324.111 395.710

This research evaluated the accuracy, F1 and precision scores of RF on the dif-
ferent datasets and tabulated the results in Table 3. RF was able to learn, adopt and
make accurate predictions from the datasets. Acceleration of tasks was the main rea-
son for parallel execution of algorithms. Therefore, running an algorithm in parallel
and sequentially would give the same accuracy, F1 and precision score keeping other
factors constant [7]. This research adopted the same RF code but different had vari-
ants of RF executions GPU. Consequently, in this research we expected no variations
in accuracy, F1 and precision scores.



Parallelizing Random Forest Trees on GPU 19

Table 3: Accuracy, F1 and precision scores of RF on different datasets

Dataset Accuracy F1 score Precision
Iris 0.9777 0.9780 0.9803
EEG Eye State 0.9321 0.9319 0.9329
Statlog (Shuttle) 0.9994 0.9994 0.9994
Skin 0.9995 0.9995 0.9995

10 Conclusion

General-purpose graphics processing units is rapidly emerging as a promising
solution to achieving high performance and energy efficiency in various computing
domains. However, there are key bottlenecks in developing GPU-based algorithms
(e.g. Random Forest) ranging from multiple forms of parallelism to complexity in
memory access. This paper integrated coarse-grained and dynamic parallelism to par-
allelize RF trees on GPU (dpRFGPU). Experiment results showed that acceleration
was evident when both dpRFGPU and parRFGPU were configured with more that
32 number of trees on low dimensional datasets. dpRFGPU had a better acceleration
than parRFGPU. These approaches accelerated RF and ultimately reduced time users
take in training RF on GPU. Dynamic parallelism can be applied in parallelizing
algorithms that are characterized by minimal diverging computations and data inde-
pendence. Further studies to be carried on memory analysis of dynamic parallelisms
and applications on larger dimension datasets.

References

1. D. B. Kirk and W. W. Hwu. "Programming Massive Parallel Processors". Else-
vier Inc., eBook ISBN: 9780123814739, 2010.

2. R. Zheng, Q. Hu and H. Jin. "GPUPerfML: A Performance Analytical Model
based on Decision Tree for GPU Architectures". In the Proceedings of the
20th International Conference on High Performance Computing and Commu-
nications, IEEE, 2018. DOI: https://doi.org/10.1109/HPCC/SmartCity/
DSS.2018.00110

3. L. Breiman. "Random forests." Machine learning, Kluwer Academic Publisher,
vol. 45(1), pp. 5-32, 2001.

4. C. Hughes and T. Hughes. "Professional Multicore Programming: Design and
Implementation for C++ Developers". Wiley Publishing, Inc, 2008.

5. F. D. Manuel, C. Eva and B. Senen. "Do we Need Hundreds of Classifiers to
Solve Real World Classification Problems?" Journal of Machine Learning Re-
search, pp. 3133-3181, 2014.

6. S. Nawar and A. M. Mouazen. "Comparison Between Random Forests, Artificial
Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR
Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon". Sensors,
vol. 17(10), 2017. DOI: https://doi.org/10.3390/s17102428



20 Kennedy Senagi, Nicolas Jouandeau

7. K. Senagi, N. Jouandeau and P. Kamoni. "Using Parallel Random Forest Classi-
fier in Predicting Land Suitability for Crop Production", Journal of Agricultural
Informatics, vol. 8(3), pp. 23-32, 2017. DOI: https://doi.org/10.17700/
jai.2017.8.3.390

8. K. Senagi and N. Jouandeau. "A Non-Deterministic Strategy for Searching Op-
timal Number of Trees Hyperparameter in Random Forest". In Proceedings of
the Federated Conference on Computer Science and Information Systems (Fed-
CSIS), IEEE, 2018. DOI: http://dx.doi.org/10.15439/2018F202

9. K. Senagi and N. Jouandeau. "Confidence in Random Forest for Performance
Optimization". In: Bramer M., Petridis M. (eds) Artificial Intelligence XXXV.
SGAI 2018. Lecture Notes in Computer Science, vol. 11311. Springer, Cham,
2018. DOI: https://doi.org/10.1007/978-3-030-04191-5_31

10. T.P. Oshiro, S.J. Perez and A. Baranauskas. "How Many Trees in a Random
Forest?" In Proceedings of the International Workshop on Machine Learning and
Data Mining in Pattern Recognition, Springer, Berlin, Heidelberg, pp. 154-168,
2012. DOI: https://doi.org/10.1007/978-3-642-31537-413

11. G. H Luo, S. K. Huang, Y. S. Chang and S. M. Yuan. "A Parallel Bees Algorithm
Implementation on GPU." Elsevier, 2013. DOI: https://doi.org/10.1016/
j.sysarc.2013.09.007

12. A. Nasridinov, Y. Lee and Y. H. Park. "Decision tree construction on GPU: ubiq-
uitous parallel computing approach." Springer, 2013. DOI: https://doi.org/
10.1007/s00607-013-0343-z

13. R. Genuer, J. Poggi, C. Tuleau-Malot and N. Villa-Vialaneix. "Random Forests
for Big Data". Big Data Research, vol. 9, pp. 28-46, Elsevier, 2017. DOI: https:
//doi.org/10.1016/j.bdr.2017.07.003

14. Y. You, Z. Zhang, C. J. Hsieh, J. Demmel and K. Keutzer. "Fast Deep Neural
Network Training on Distributed Systems and Cloud TPUs." IEEE, 2019. DOI:
10.1109/TPDS.2019.2913833

15. C. Rich and N. M. Alexandru. "An Empirical Comparison of Supervised Learn-
ing Algorithms". ICML ’06 Proceedings of the 23rd international conference
on Machine learning, pp. 161-168, ACM, 2006. DOI: https://doi.org/10.
1145/1143844.1143865

16. L. Breiman. "Bagging Predictors". Machine Learning, Kluwer Academic Pub-
lishers, Boston, vol. 24(2), pp. 123-140, 1996.

17. C. Lie, J. Deng, K. Cao, Y. Xiao, L. Ma, W. Wang, T. Ma, C. Shu. "A Compari-
son of Random Forest and Support Vector Machine Approaches to Predict Coal
Spontaneous Combustion in gob", ScienceDirect, Elsevier, vol. 239, pp 297-311,
2018. DOI: https://doi.org/10.1016/j.fuel.2018.11.006

18. F. Lettich, C. Lucchese, F. Maria Nardini, S. Orlando, R. Perego, N. Tonellotto,
R. Venturini. "Parallel Traversal of Large Ensembles of Decision Trees." IEEE,
2018. DOI: 10.1109/TPDS.2018.2860982

19. P. D. Vouzis and N. V. Sahinidis. "GPU-BLAST: using graphics processors to
accelerate protein sequence alignment". Journal of Bioinformatics (Oxford Eng-
land), vol.27(2), pp. 182-188, 2011. DOI: https://dx.doi.org/10.1093\
%2Fbioinformatics\%2Fbtq644



Parallelizing Random Forest Trees on GPU 21

20. J. Zhang, H. Wang and W. Feng. "cuBLASTP: Fine-Grained Parallelization of
Protein Sequence Search on CPU+GPU". In the Proceedings of IEE/ACM Trans-
actions on Computational Biology and Bioinformatics, vol.14(4), 2017. DOI:
https://doi.org/10.1109/TCBB.2015.2489662

21. Z. Wen, B. He, K. Ramamohanarao, S. Lu and J. Shi. "Efficient Gradient Boosted
Decision Tree Training on GPUs". In the Proceedings of International Parallel
and Distributed Processing Symposium, IEEE, 2018. DOI: https://doi.org/
10.1109/IPDPS.2018.00033

22. M. Daga and M. Nutter. "Exploiting Coarse-grained Parallelism in B+ Tree
Searches on an APU". In the Proceedings of the SC Companion: High Perfor-
mance Computing, Networking Storage and Analysis, USA, 2012, IEEE. DOI:
https://doi.org/10.1109/SC.Companion.2012.40

23. J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng and K. Li. "A Parallel Random
Forest Algorithm for Big Data in a Spark Cloud Computing Environment". EEE
Transactions on Parallel and Distributed Systems, vol. 28(4), pp. 919-933, IEEE,
2017. DOI: https://doi.org/10.1109/TPDS.2016.2603511

24. A. Liaw and M. Wiener. "Classification and Regression by randomForest".
R News, vol 2(3), pp. 18-22, 2002. https://CRAN.R-project.org/doc/
Rnews/

25. H. Grahn, N. Lavesson, M. H. Lapajne and D. Slat. "CudaRF: a CUDA-Based
Implementation of Random Forests". Proceedings of the 9th IEEE/ACS Inter-
national Conference on Computer Systems and Applications, pp. 95-101, IEEE,
2011. DOI: https://doi.org/10.1109/AICCSA.2011.6126612

26. I. H. Witten and E. Frank. "Data Mining Practical Machine Learning Tools and
Techniques". 2nd edition, Morgan Kaufmann Publishers, 2005.

27. J. Wang, N. Rubin, A. Sidelnik and S. Yalamanchili. "LaPerm: Locality
Aware Scheduler for Dynamic Parallelism on GPUs". In the Proceeding of the
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), vol. 44(3), pp. 583-595, IEEE, 2016. DOI: https://doi.org/10.
1109/ISCA.2016.57

28. W. T. Lo, Y. S Chang, R. K. Sheu, C. C. Chiu and S. M. Yuan. "CUDT: A
CUDA Based Decision Tree Algorithm". The Scientific World Journal, 2014.
DOI: http://dx.doi.org/10.1155/2014/745640

29. Dua D. and Taniskidou K. E. "UCI Machine Learning Repository".
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of
Information and Computer Science, 2017.

30. NVIDIA Corporation: Profiler user’s guide. [online]. https://docs.nvidia.
com/cuda/profiler-users-guide/\#nvprof-overview. [Date Accessed:
April 2019]

31. K. Mahale, S. Kanaskar, P. Kapadnis, M. Desale, S. M. Walunj. "Acceleration
of Game Tree Search Using GPGPU". In the Proceedings of the International
Conference on Green Computing and Internet of Things (ICGCIoT), 2015, IEEE.
DOI: https://doi.org/10.1109/ICGCIoT.2015.7380525

32. NVIDIA Corporation. CUDA Toolkit. [Online]. https://developer.
nvidia.com/cuda-toolkit. Date Accessed[April 2019]



22 Kennedy Senagi, Nicolas Jouandeau

33. G. Barlas. "Multicore and GPU Programming An Integrated Approach". Elsevier
Inc., 2015.

34. J. R. Quinlan. "C4.5 Programs for Machine Learning". Machine Learning, vol.
16, pp. 235-240, Kluwer Academic Publishers, Boston, 1994.

35. T. Rauber, G. Rünger. "Parallel Programming For Multicore and Cluster Sys-
tems". Springer-Verlag Berlin Heidelberg, 2010. DOI: https://doi.org/10.
1007/978-3-642-04818-0

36. NVIDIA. [Online]. Available https://docs.nvidia.com/cuda/index.
html. [Accessed: April 2019]

37. D. N. LeBard, B. G. Levine, P. Mertmann, S. A. Barr, A. Jusufi, S. Sanders, M.
L. Klein, A. Z. Panagiotopoulos. "Self-Assembly of Coarse-Grained Ionic Sur-
factants Accelerated by Graphics Processing Units". Journal Soft Matter, Issue
8, 2012. https://doi.org/10.1039/c1sm06787g

38. J. Nickolls and W. J. Dally. "The GPU Computing Era". IEEE Micro, vol30(2),
2010. https://doi.org/10.1109/MM.2010.41


