
Homogeneous Transfer Active Learning for Time
Series Classification

Patrick Gikunda
PASTIS Research Group
LIASD, Université Paris 8

Paris, France
kinyuagikunda@gmail.com

Nicolas Jouandeau
PASTIS Research Group
LIASD, Université Paris 8

Paris, France
n@up8.edu

Abstract—The scarcity of labeled time-series data is a major
challenge in use of deep learning methods for Time Series
Classification tasks. This is especially important for the growing
field of sensors and Internet of things, where data of high dimen-
sions and complex distributions coming from the numerous field
devices has to be analyzed to provide meaningful applications.
To address the problem of scarce training data, we propose
a heuristic combination of deep transfer learning and deep
active learning methods to provide near optimal training abilities
to the classification model. To mitigate the need of labeling
large training set, two essential criteria – informativeness and
representativeness have been proposed for selecting time series
training samples. After training the model on source dataset,
we propose a framework for the model skill transfer to forecast
certain weather variables on a target dataset in an homogeneous
transfer settings. Extensive experiments on three weather datasets
show that the proposed hybrid Transfer Active Learning method
achieves a higher classification accuracy than existing methods,
while using only 20% of the training samples.

Index Terms—Transfer Learning, Active Learning, Time Series
Classification

I. INTRODUCTION

The technological landscape is changing at high speed,
with ability to capture, process and disseminate huge amount
of time-based data faster than before. This type of data is
characterized by time as the primary axis defined as Time
Series Data (TSD) and usually attributed by high dimension
and complex distributions.

Machine Learning (ML) provides automated abilities for
analyzing complex patterns in TSD. The problem is first
formulated e.g. into a prediction problem and a model is built
on a training dataset composed of input data, labeled with their
corresponding classes. The model is then used to estimate the
class of test data whose actual class is unknown. To build
an accurate model, it is required to find an appropriately
abstracted representation of data called features which would
contain all the information relevant to the target problem.
This process is referred to as feature engineering. Feature
engineering is a key step in the model building process
which is a two-step process of feature extraction and feature
selection. The most popular feature learning methods are based
on deep learning, e.g., using Deep Neural Networks (DNNs).
A DNN consists of an ensemble of artificial neurons organized
in a layer-wise fashion. Each neuron is a simple nonlinear

computational unit with internal parameters, weights, and
biases. Figure 1 presents a 1D Convolving by sliding a filter
over the TSD input.

During training, these parameters are optimized so that the
model can accurately categories training data into their own
classes.

Slides in one direction

TimeKernel

feature1

feature2

feature3

feature4

feature5

Fig. 1: Convolving on time dimension

In practice however, use of DNNs for TSD face several
challenges such as: a) lack of practical technique for the opti-
misation of hyper-parameters (e.g. activation function, number
of layers, number of neurons per layer, etc.); b) requirements
in high computational power to train complex models in a
reasonable amount of time; c) need for a diverse large quantity
of labeled training data, etc. A possible solution to alleviate
the training data scarcity problem is to use Active Learning
(AL) or Transfer Learning (TL).

TL refers to techniques that aim at extracting knowledge
from a source domain, and using it to improve the learning of
a model on a target domain [1]. Data from the source domain
can partially compensate the scarcity of data on the target
domain by reusing model skill. Deep TL refers to transfer
learning applied to DNNs which has become widespread with
the rise in popularity of DNNs. For example, this is done
by training ConvNets on a large dataset (e.g. ImageNet which
contains 1.2M instances with 1000 classes), and then using the
ConvNet either by fine-tuning or as fixed feature extractor for
the target task. Typically, parameters (weights and biases) of
a DNN model pre-trained on a source domain are transferred
to another compatible DNN on the target domain. In deep
TL, the hypothesis is if the features learned on the source
model are useful for the target domain, then the parameters
of a DNN pre-trained on the source domain can be used to
initialize target model [2].

Once transferred, the target DNN is fine-tuned, i.e., re-
trained using the target data to adjust the transferred parame-
ters to the problem on the target domain as needed. In deep
transfer settings, the ability of a classifier on the target task
is based on its experience on similar tasks. The assumption
is that the source task and the target task share some (hyper-
)parameters but this not always the case [3] especially for
heterogeneous tasks. When the source and target tasks are
unrelated, the knowledge transfer from source task may not
be useful or even compromise the performance of a target
task through a negative transfer. Thus, to ensure safe-transfer
of knowledge is very critical to evaluate the similarity of the
source and target tasks. In this paper, homogeneous datasets
were considered hence no dataset similarity evaluation was
undertaken.

AL provides means of iteratively picking data points the
model wants to learn from [4]. This means that for a classifi-
cation task the model will not requires all the data for training
but instead pick the most effective data-points for training.
This provides means of analyzing vast amount of data with
improved efficiency by iteratively select the most informative
data instances [5]. In AL various strategies for selecting
training samples exist. Majorly, the strategies are based on
random sampling or uncertainty sampling. Randomly selecting
training instances is inefficient in many situations especially
when data has skewed categorical features which can result
in selecting non-informative or redundant instances. Better
performing strategies use statistical theory such as entropy and
margin to measure instance informativeness, however, it often
fails to capture the data distribution information [6].

While deep AL and TL are widely used in other domains
especially image analysis, they have not reached the same level
of maturity for time series prediction tasks mainly because of:
a) time-series labeled datasets are rather scarce due to the high
cost of the labeling especially for a specific application; b)
lack of very large-scale time-series datasets e.g. ImageNet; c)
challenge of varying data formats and units of measurement.
For instance, some datasets provide sparse time-series con-
taining data points unevenly spaced in time indicating events,
while others provide non-sparse time-series consisting of data
values evenly spaced in time and sampled at high frequencies;
d) data dimensionality consisting of different numbers of
channels. For instance, a temperature sensor provides a single
channel sequence, while three-axis accelerometers record three
channels, each indicating the acceleration on one axis, etc.
In this paper, we present an hybrid approach called Transfer
Active Learning (TAL), for creating an efficient time series
classifier.

The rest of the paper is organized as follows: Section II
highlights related works on TL and AL on time series analysis;
section III presents our proposed TAL method; section IV de-
scribes the experimental setup and respective results; section V
present our perspective and future interests.

II. RELATED WORKS

A. Deep Learning for Time Series Classification

Recurrent Neural Network (RNN) are popular methods for
time series forecasting. However, when analyzing large time
series datasets they suffer the following limitations; a) they
mainly predict an output for each time stamp in the time
series [7]. b) when they train from long data series, they suffer
vanishing gradient problem [8]. c) they have high compu-
tational requirement and hard to parallelize [10]. Successful
application of deep learning in various domains motivates
researchers to adopt deep learning methods for Time Series
Classification (TSC) in an effort to overcome RNN limitations
[10]. Wang et.al [10] presents a ResNet for TSC problem and
validated on the UCR1 a TSD archive that consists of 85 small-
scale univariate time-series datasets covering a wide range of
sensor modalities, such as accelerometer data, energy demand,
chemical concentration in water, etc.

The first 9 ConvNets layers are followed by a global average
pooling layer that averages the time series across the time
dimension for reducing the total number of parameters in the
model hence avoiding overfitting. In general ResNets are char-
acterized by shortcut residual connection between successive
ConvNet layers. On a performance comparative study of DL
methods on TSC, ResNet used was found to outperform other
9 methods and the generalization capabilities was attributed to
the flexible architectural nature of CNN [11]. The authors of
[12] built a CNN based time series classifier from scratch. To
circumvent the need of big training data problem they used
semi-supervised training method and data augmentation tech-
niques that warped and split the time-series dataset. On a real-
world problems DL has been used for spatio-temporal series
forecasting problems, such as oceanography and meteorology
[13]. On human activity recognition using wearable sensors,
DL is slowly replacing the feature engineering approaches by
automatically learning the features through back-propagation
[14]. On electronic health records, a generative adversarial
network with a CNN was trained for risk prediction based
on patients historical medical records [15].

B. Transfer Learning for Time Series Classification

AL and TL techniques have been explored much less for
time-series data because of the scarcity of training data, and
the absence of a large-scale labeled dataset like ImageNet.
Past works have attempted to tackle this issue with different
degrees of generality. In [1] they re-use data in the source
domain to train a model in the target domain through: a)
feature representation transfer that finds a feature mapping
between the source and target domains, and; b) parameter
transfer that transfers parameters from a source model to target
model. Several works presents results of parameter transfer. In
[16], the results in several scenarios of parameter transfer such
as transfer between subjects, datasets, sensor localisation, or
modalities were presented. The performances of transfers were
better when parameters of the lower layers were transferred.

1http://www.timeseriesclassification.com/

In [17], a transfer approach for CNN was presented. It firstly
trains a CNN using labeled data on the source domain and
defines a CNN with similar architecture on the target domain.
The target CNN is then trained on unlabeled data to minimize
the distance between its parameters and the ones of the source
CNN. It, however, only works under the assumption that the
set of activities on the source and target domains is the same.
In [18], an iterative co-training approach using classification
models trained on labeled source data to attribute pseudo-
labels to unlabeled target data was presented. It works under
the assumption that source and target domains contain the
same labels. Source and target data are then projected into
a common space using the transformation, and classifiers are
trained on the projected data to attribute more reliable labels.

In [19], a RNN was trained using data from the UCR. The
RNN composed of an encoder and decoder to reproduce its
input on its output layer using a subset of 24 datasets of
the UCR (source domain). After this pre-training step, the
encoder was used as a feature extractor for a Support Vector
Machine (SVM) fine-tuned on each of 30 other datasets of the
UCR (target domain). The experimental results indicated that
data on source domains not necessarily related to the target
domain were still useful for achieving state-of-the-art results.
Similar recent efforts in [20] to create a pre-trained model for
TSD tasks using UCR data. In [11], a method to compute the
similarity between source and target datasets to determine the
most suitable dataset for transfer was proposed. It assumes
that one labeled target and several labeled source datasets
are available. For each dataset, the method firstly computes
the average of sequences for each class. The barycentre of
all class averages is then computed to yield a characteristic
sequence of the dataset. The similarity between two datasets is
computed using the Dynamic Time Warping distance between
their respective characteristic sequences. The source dataset
with the lowest distance is then chosen and used to train a
DNN. Its weights are finally transferred on the target domain
for fine-tuning. Experiments carried out on the 85 datasets of
the UCR showed that the transfer yielded better classification
performances when the similarity between source and target
was higher. Using dissimilarity matrix, Spiegel et,al were able
to transfer specific training examples from source dataset to
target set [21]. Their model was used to predict the wind speed
in a farm. First they trained the base network using historical
wind-speed data, then validated the model using new data from
the farm. Using restricted Boltzmann machines Banerjee et.al
first pre-trained the model for acoustic phoneme recognition
and then fine-tuned for post-traumatic stress disorder diagnosis
[22]. In their work, Serra et.al use TL to improve the accuracy
of deep neural networks for TSC. The CNN was designed
with an attention mechanism to encode the time series in a
supervised manner before fine-tuning on a target dataset [23].

C. Active Learning for Time Series Classification

Many AL strategies have been proposed for traditional
active learning, however, none of them is particularly effective
for TSC. Three main sample selection techniques include: a)

Uncertainty sampling with an objective to select an instance
the classifier is most uncertain about as the most potential
instance for labeling [24]; b) Variance reduction aims at
minimizing the model error rate by selecting instances with
the minimum variance, and c) Expected gradient length that
aims at querying instance that causes the maximal change
to the current model [4]. AL strategies for TSC range from
density estimation to multi-factor methods. The strategies can
be categorized into two groups: population-based strategies or
pool-based strategies [25]. In population-based AL, train and
test sets are drawn from the same distribution. The assumption
here is that train and test data both follow the same conditional
distribution. The objective is to find the optimal input density
for drawing instances for labeling. In pool-based AL, the
objective is to select instances from a pool so that a model
trained from them can best classify the remaining instances.
Whether population or pool-based, AL is an iterative process
[26]. First a base model is built using a small number of
labeled training instances, then using utility metrics it selects
instances and queries for their labels. The prediction result of
a single instance is represented by a vector, whose elements
are the posterior probability with respect to each class label.
The newly labeled instances are added to the training labeled
set and the model is updated. This process iterates until a
termination criterion is met, e.g, query budget or number of
iterations is exhausted. Based on the number of unlabeled
instances to query at each iteration, AL methods can be
grouped as either: a) sequence-mode AL- a single instance
is queried at a time or; b) batch-mode AL- multiple instances
are queried at each iteration [26].

The authors [27] proposed a procedure to ask experts to
label the frequent patterns of a long time series stream.
He et al. [28] provided a metric that considered both the
uncertainty of the classifier, and similarity between time series.
Neither methods have exploited the patterns in time series,
which is important in saving the labeling cost. A recent study
[30] propose use of Nearest Neighbor by adapting shapelet
discovery to find the discriminative patterns in the training set,
and incrementally update the patterns as new training samples
is availed. Further, the study propose a probabilistic model
over the instances, patterns and labels that considers both the
diversity of label distribution, and patterns of samples. Few
works on combination of TL and AL for TSC exist. Natarajan
and Laftchiev in their work combined TL and AL methods
to predict personal thermal comfort. The method leverages
domain knowledge from prior users and an AL strategy for
new users that reduces the necessary size of the labeled dataset.
When tested on real dataset from five users, their method
achieves a 70% reduction in the required size of the labeled
dataset as compared to the fully supervised learning approach
[26].

III. TRANSFER ACTIVE LEARNING

The proposed model is made up of two main deep learning
techniques namely: a) TL to provide model skill re-use on the
target task; b) AL to interactively query and add samples on the

training set by using labeled data to provide information about
the class labels or class boundaries while the unlabeled data
is used to learn the base data distribution. Before diving into
details of mentioned techniques, lets first provide a definition
of TSC problem.

Definition III.1. An univariate time series Ut =
[x1, x2, ..., xT] is an ordered set of real values. The
length of Ut is equal to the number of observable time-points
T .

Definition III.2. A multivariate time series Mt =
[U1

t , U
2
t , ..., U

n
t] consists of n observables per time-point with

Ut
i ∈ RT .

Definition III.3. A dataset D =
(X1, Y1), (X2, Y2), ..., (XN , YN) is a collection of pairs
(Xi, Yi) where Xi could either be Ut or Mt with Yi as its
corresponding label. For a dataset containing K classes, the
label vector Yi is a vector of length K where each element
j ∈ [1,K] is equal to 1 if the class of Xi is j and 0 otherwise.

We can therefore define, TSC as a mapping task from the
space of possible time based inputs to a probability distribution
over the labels denoted by the following equation:

Ct = f(w × Ut−l/2:t+l/2 + b)|∀t ∈ {1, T} (1)

C denotes the convolution result on a univariate time series Ut

of length T with a filter w of length l, a bias parameter b and a
non-linear function f . Applying several filters on a time series
will result in a multivariate time series whose dimensions are
equal to the number of filters used. Using the same filter values
w and b in ConvNets its possible to find the results for all time
stamps t ∈ [1, T]. This is possible by using weight sharing that
enables the model to learn feature detectors that are invariant
across the time array.

A. Deep Transfer Learning

A simple definition of TL is using knowledge acquired
on one task (source task), to solve related task (target task).
The more related the tasks, the better suitability of the model
skill. Invariably, researchers define TL from different contexts
but regardless, the motivation of TL is exploiting knowledge
acquired from source setting to improve generalization on
target setting with exponentially fewer training examples. Lets
begin this section by first defining deep TL.

Definition III.4. A domain can be denoted as D = X , P (X)
with X representing the feature space and P (X) representing
the marginal probability. X = {xi,, xT }, xi ∈ X where xi
represent specific time vector.

Definition III.5. For a given domain, the task can be de-
fined as T = Y, P (Y |X) with Y representing the label
space and P (Y |X) representing the prediction objective func-
tion (learned from instance feature/label pair) where Y =
{yi,, yT }, yi ∈ Y .

Definition III.6. Given source domain DS = X , P (X) and
source task TS = Y, P (Y |X) then TL is learning target
conditional probability distribution P (YT |XT) in DT .

With the above definitions in mind, a deep learning model
Θ is denoted as Y ≈ Θϑ(θ|D) where θ are parameters and ϑ
are hyper-parameters. D is training data and Y is class labels.
The objective is to find estimate of parameters θ that optimizes
some loss function L. The model performance based on loss
function is dependent on ϑ, this implies that the parameters are
also dependent on the hyper-parameters. The parameters are
learnt during training, but hyper-parameters are set of initial
model variables set before start of training and they include;
number and size of the convNet layers, learning rate, weight
initialization, etc.

The two main strategies of deep TL include: a) Using
pre-trained models as feature extractors. The objective is to
leverage the pre-trained weight to extract features and only
the final layer is replaced . b) Fine Tuning pre-trained models.
Selective layers are re-trained and others frozen. The question
of weather to freeze pre-trained layers or use them as fixed
feature extractor is determined by the size of available labeled
set in the target settings that can be used for training. Under
normal circumstance, when the labels in the target task is
scarce, freezing is the best option to avoid overfitting. When
the labels are sufficient then fine-tuning is a better choice.

During target training, first the parameters’s are initialized
using previous task weights Θ ← ϑθ. After the weight’s
initialization, a forward pass through the model is applied
using the function f(θ, xi) and the output of an input xi
is computed. The output is a vector whose components are
the estimated probabilities of xi belonging to each class. The
model’s prediction loss is computed using a cost function,
for example the negative log likelihood. Then, using gradient
descent, the weights are updated in a backward pass to
propagate the error. Thus, by iteratively taking a forward
pass followed by backpropagation, the model’s parameters are
updated in a way that minimizes the loss on the training data.
During testing, the model is tested on unseen data which
is and a forward pass on this unseen input followed by a
class prediction. The prediction corresponds to the class whose
probability is maximum. For this case a categorical cross
entropy is applied as the loss function denoted as:

L(Ut) = −
K∑
j=1

Yj log Ŷj (2)

with L(Ut) denoting the loss when classifying the input time
series Ut, Ŷj denoting probability of Ut class Y equal to class
j out of K classes in the dataset. For batch wise training loss
can be defined using the following equation:

J(Ω) =
1

N

N∑
n=1

L(Un
t) (3)

B. Sample Selection
The key objective in active learning is to develop algorithms

with precise queries that maximize the accuracy of classifi-

cation or prediction task. Since the boundary class regions
are often those in which instances of multiple classes are
present, they can be characterized by class label uncertainty
or disagreements between different learners. However, this
may not always be the case, because instances with greater
uncertainty are not representative of the data, and may some-
times lead to the selection of unrepresentative outliers. This
situation is especially likely to occur in data sets that are very
noisy. In order to address such issues, some models focus
directly on the error itself, or try to find samples that are
representative of the underlying data. We consider actively
selecting instances in batches, where the selection must be
constrained by some budget. Let xi represents an instance
and yi where yi ∈ {1,K} represents the class label for
xi, D = DL ∪ DU , DL denotes labeled instances where
DL = {(x1, y1), (x2, y2),, (xn, yn)}, DU denotes unla-
beled instances where DU = {(x1, ?), (x2, ?),, (xn, ?)},
and Θ to denotes model defined by model parameters. For
label space Y with K classes in D the class probability
estimator is used to compute the class estimate of a label.

1) Uncertainty Measure: In uncertainty sampling settings,
the model attempts to select instances it is most uncertain
about or what has not been seen so far. The Three major
metrics used to define uncertainty include; least confidence,
sample margin and entropy. Least confidence consider the
class label with the highest posterior probability with an
objective function to decrease the error rate. Sample margin
considers the first two most probable class labels using an
objective function of decreasing the error rate. One major
deficiency of both least confidence and sample margin is
that they does not consider the output distributions for the
remaining class labels in the set. Entropy considers class label
over the whole output prediction distributions with an objective
function to reduce the log-loss. Using entropy the uncertainty
of an instance xi in DU can be defined as:

fu(x) = argmax
i
−
∑
i

P (yi|xi) logP (yi|xi) (4)

where P (yi|xi) denotes posterior probability of the instance
xi being a member of the ith class, which ranges over
all possible labels yi. For a binary classification task, the
most potential instances are the ones with equal posterior
probability with respect to all possible classes. For the binary
classification the classifier is normalized to ensure that the
predicted probabilities sum up to 1. Therefore, the entropy
objective function En(X) for the binary class (k = 2) problem
is minimized as follows:

En(X̄) =

k∑
i=1

P − 0.5 (5)

2) Correlation Measure: Majorly, AL query strategies use
the uncertainty metric measure to evaluate the utility of a
independent and identically distributed instance. However,
when developing efficient AL methods, it is important to con-
sider instance distribution information. The instance diversity
information aids in querying most representative instances.

This approach significantly improves the query performance
while avoiding selecting outlier instances. In this paper we
focus on exploiting the pairwise similarities of instances,
therefore the informativeness of an instances is weighed by
average similarity to its neighbors. Let xi and xj be a pair
of instances. Given a label space the correlation measure (fc)
between a pair of instances xi and xj can be defined as:

fc(x) =
1

DU

∑
xj∈DU/xi

fc(xi, xj) (6)

The value of fc(xi) represents the instance density of xi in
the unlabeled set. The larger the value, the more densely
an instance is correlated with others. A low value of the
correlation measure indicates an outlier instance which should
not be considered for labeling.

3) Most Informative and Representative sample: To select
the most informative and representative samples in a distri-
bution, a heuristic combination of correlation and uncertainty
is done. The most effective instance to label by the current
model can be expressed as:

x∗ = argmax
i

(fu(x) · fc(x)) (7)

Algorithm 1: Transfer Active Learning (TAL)

input : labeled data Dtrain, Dtest ← DL, available
DU , budget m

Θ← ϑθ initialization;
while m 6= 0 do

for each xi ← DU do
u← fu(x), c← fc(x);
Select x̂← argmax

i
(u · c);

Predict class ŷ ← Θ(x̂);
Update labeled set Dtrain ← x̂t, ŷt;
Compute query loss Ltrain ← L(ŷ, y);

for t = [1, T] do
Get batch from D-train xt, yt ← Dtrain;
Get train loss on each batch L← L(Θ(xt), yt);
θ ←: Update parameters;

Get batch from D-test x, y ← Dtest;
Get test loss on test batch θ ← L(Θ(x), y);
m← m− 1;

output: Output Θ

In Algorithm 1. learning starts from a small labeled set DL

with initialized parameters θ and hyper-parameters ϑ for the
model Θ and proceeds sequentially. For each iteration of AL,
uncertainty fu(x) and correlation fc(x) for each candidate
sample xi is computed. Then using a heuristic combination,
the most informative instance instance is selected for labeling.
After that, the new labeled instance is directly added to the
training set DL to update the model. Training on new data
proceed in batch mode while computing loss for every batch.

IV. EXPERIMENTAL SETUP

In this section, we empirically study the proposed method
for multivariate time series on three real-world datasets. The
experiments were carried out on NVidia K80 GPU, which
provided up to 12.0X speedup compared to standard CPU.
The experiments were implemented using Pytorch. To show
competence of proposed method, comparative experiments
were run on pre-trained and un-trained settings. Compared
AL methods include: a) Random selection of samples in
the distribution; b) Margin selection based on the sample
distance to the hyperplane; c) QUIRE margin based with
mini-max viewpoint [30]; d) DFAL adversarial with smallest
perturbation [31], and ; e) Core-Set non-uncertainty based AL
method [32].

A. Network Architecture

For experiments ResNet architecture was considered fol-
lowing two reasons: a) the architecture has been adopted
in other recent time series classifications [33]; b) it per-
forms comparably well in a large number of cases [11].
This is because skip-connections are very efficiently with
deeper networks by allowing gradient flow directly through
the bottom layers. The residual connections allow skipping of
multiple layers within deeper neural network. In the proposed
network the main hyper-parameters are 4 residual modules,
8 × 32 kernel size and 128 filters. For all the convolution
and dense layers L2 regularization is used, 10−2 learning rate,
categorical cross-entropy is used as loss function. Accuracy is
used as a performance metric by recording training loss and
performance reporting on the test set. Sigmoid function is used
as a decision boundary to return a probability value between 0
and 1. Training batch size was set to 64 with and testing batch
size set to 128 with 100 epochs on each round of training.

B. Datasets

Homogeneous transfer was considered with pre-training
done with three multivariate time series datasets namely: a)
RAUS - Rainfall in Austrialia2 - dataset contains daily weather
observations from various Australian weather stations for a
period of 10 years (with over 110K samples); b) MeteoNet3 - a
meteorological dataset developed and made available by ME-
TEO FRANCE, the French national meteorological service.
The dataset temporal coverage range 2016-2018 (with over
60M samples) and spatial coverage being North-West region of
France. The dataset contains full time series over 500 ground
stations measuring pressure, temperature, humidity, wind di-
rection and speed, dew point and precipitation, recorded every
6 min; c) KenCentralMet - Kenya Meteorological Department4

daily weather observations covering Central Kenya for a period
of 3 years from 2012-2014 (with over 100K samples).

For RAUS dataset, data was first segregated into categorical
and numerical variables. The 6 categorical variables include:

2https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
3https://meteonet.umr-cnrm.fr/
4https://meteo.go.ke/

Location, WindGustDir, WindDir9am, WindDir3pm, RainTo-
day and RainTomorrow. There are two binary categorical vari-
ables i.e. RainToday and RainTomorrow with RainTomorrow
being the target variable. For categorical the date variable has
the highest cardinality of 3436 labels, we performed some
feature engineering to deal with high cardinality problem. To
do this we parse the date coded as object into datetime format.
Then one hot encoding was performed on all variables while
adding dummy variables on missing data. The other data pre-
processing include removing of outliers and splitting training
and testing data at 0.2. Median imputation of missing data was
done and in order to avoid overfitting imputation was done
over the training set and then propagated to the test set. For
missing categorical values, input was done with most frequent
value. Similarly, for MeteoNet and Central Kenya dataset, one
hot encoding was performed on all categorical variables while
adding dummy variables on missing data with precipitation
being the binary target variable.

Deep Learning Models Accuracy % Recall F1-Score
Random 61.68 61.33 62.58
Margin 60.57 64.08 60.32
QUIRE 63.45 67.45 61.78
DFAL 65.87 63.45 65.43

Core-Set 59.87 61.48 57.56
TAL 67.45 69.21 65.56

TABLE I: Median performance during the first 100 number
of queries on each of the three datasets

Table I shows the classification accuracy during the first 100
number of queries on each of the three datasets. Random and
Margin approaches tend to yield decent performance when the
number of queries is minimal. But, as the number of queries
increases, this simple approach loses its edge and often is
not as effective as the other active learning approaches. Both
Core-set and DBAL are performing well at the beginning
of the learning stage. As the number of queries increases,
we observe their performance become less competitive. The
performance of QUIRE is mixed. It works well on RAUs
and KenCentralMet datasets, but performs less competitive on
MeteoNet. We attribute the this to the fact that unlabeled data
structures may not be consistent. TAL is the most competative
method among the compared methods. This is attributed to its
simple yet effective hybrid strategy of actively selecting most
effective training samples from the distribution.

Deep Learning Models Accuracy % Recall F1-Score
QUIRE 63.45 67.45 61.78

Pre-trained QUIRE 63.45 67.45 61.78
DFAL 65.87 63.45 65.43

Pre-trained DFAL 65.87 63.45 65.43
Core-Set 59.87 61.48 57.56

Pre-trained Core-Set 59.87 61.48 57.56
TAL 67.45 69.21 65.56

Pre-trained TAL 67.45 69.21 65.56

TABLE II: Median transfer learning performance during the
first 100 number of queries

In order to maintain a homogeneous transfer, 6 features
were considered from the 3 datasets with precipation as the

target variable for all sets. This way, leveraging the similarity
between the datasets was possible without further pairwise
comparison of the data. MeteoNet was selected as the picked
as source dataset while RAUS and KenCentralMet as target
datasets. The result of two transfer tasks were recorded as
presented in table II. The results shows pre-trained models
leverage on target task better than un-trained models with TAL
taking a competitive lead on performance.

V. CONCLUSION

In this paper, we proposed a novel deep Transfer Active
Learning method for time series classification. We showed
that its possible to use deep learning methods to discovery
the discriminative patterns of the multivariate time series data.
Then we defined a heuristic combination of informativeness
and representative metrics for selecting training samples. Fur-
ther we demonstrated the relevance of model skill transfer
in homogeneous settings. In the experiment, we validated our
method on a three time series datasets. The results showed that
our proposed hybrid method is most competitive. In future,
we plan to perform an adaptive transfer active learning on
multivariate time series classification.

REFERENCES

[1] Cook, D., Feuz, K.D. and Krishnan, N.C., Transfer learning for activity
recognition: A survey. Knowledge and information systems, vol. 36(3),
pp.537–556, September 2013.

[2] Kornblith, S., Shlens, J. and Le, Q.V., Do better imagenet models transfer
better?. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2661–2671 2019.

[3] Raina, R., Battle, A., Lee, H., Packer, B. and Ng, A.Y., June. Self-taught
learning: transfer learning from unlabeled data. In Proceedings of the
24th international conference on Machine learning, pp. 759–766), 2007.

[4] Settles, B., Active learning literature survey, 2009.
[5] Gal, Y., Islam, R. and Ghahramani, Z., July. Deep bayesian active

learning with image data. In International Conference on Machine
Learning, pp. 1183–1192, 2017.

[6] Fu, Y., Zhu, X. and Li, B., A survey on instance selection for active
learning. Knowledge and information systems, 35(2), pp.249–283, 2013.

[7] Langkvist, M., Karlsson, L. and Loutfi, A., A review of unsupervised
feature learning and deep learning for time-series modeling. Pattern
Recognition Letters, Vol. 42, pp.11–24, 2014.

[8] Pascanu, R., Mikolov, T. and Bengio, Y., Understanding the exploding
gradient problem. CoRR, abs/1211.5063, vol. 2(417), 2012.

[9] Pascanu, R., Mikolov, T. and Bengio, Y., May. On the difficulty
of training recurrent neural networks. In International conference on
machine learning, pp. 1310–1318, 2013.

[10] Gamboa, J.C.B., Deep learning for time-series analysis. arXiv preprint
arXiv:1701.01887, 2017.

[11] Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L. and Muller, P.A.,
Deep learning for time series classification: a review. Data mining and
knowledge discovery, Vol. 33(4), pp.917–963, 2017.

[12] Le Guennec, A., Malinowski, S. and Tavenard, R., September. Data
augmentation for time series classification using convolutional neural
networks. In ECML/PKDD workshop on advanced analytics and learn-
ing on temporal data, 2016.

[13] Ziat, A., Delasalles, E., Denoyer, L. and Gallinari, P., November. Spatio-
temporal neural networks for space-time series forecasting and relations
discovery. In 2017 IEEE International Conference on Data Mining, pp.
705–714, 2017.

[14] Nweke, H.F., Teh, Y.W., Al-Garadi, M.A. and Alo, U.R., Deep learning
algorithms for human activity recognition using mobile and wearable
sensor networks: State of the art and research challenges. Expert Systems
with Applications, Vol. 105, pp.233–261, 2018.

[15] Che, Z., Cheng, Y., Zhai, S., Sun, Z. and Liu, Y., November. Boosting
deep learning risk prediction with generative adversarial networks for
electronic health records. In 2017 IEEE International Conference on
Data Mining, pp. 787–792, 2017.

[16] Morales, F.J.O. and Roggen, D., September. Deep convolutional feature
transfer across mobile activity recognition domains, sensor modalities
and locations. In Proceedings of the ACM International Symposium on
Wearable Computers, pp. 92–99, 2016.

[17] Khan, M.A.A.H., Roy, N. and Misra, A., March. Scaling human activity
recognition via deep learning-based domain adaptation. In IEEE inter-
national conference on pervasive computing and communications, pp.
1–9, 2018.

[18] Wang, J., Chen, Y., Hu, L., Peng, X. and Philip, S.Y., March. Stratified
transfer learning for cross-domain activity recognition. In IEEE inter-
national conference on pervasive computing and communications, pp.
1–10, 2018.

[19] Malhotra, P., TV, V., Vig, L., Agarwal, P. and Shroff, G., TimeNet:
Pre-trained deep recurrent neural network for time series classification.
arXiv preprint arXiv:1706.08838, 2017.

[20] Kashiparekh, K., Narwariya, J., Malhotra, P., Vig, L. and Shroff, G.,
July. ConvTimeNet: A pre-trained deep convolutional neural network
for time series classification. In International Joint Conference on Neural
Networks, pp. 1–8, 2019.

[21] Hu, Q., Zhang, R. and Zhou, Y., Transfer learning for short-term wind
speed prediction with deep neural networks. Renewable Energy, Vol. 85,
pp.83–95, 2016.

[22] Banerjee, D., Islam, K., Xue, K., Mei, G., Xiao, L., Zhang, G., Xu, R.,
Lei, C., Ji, S. and Li, J., A deep transfer learning approach for improved
post-traumatic stress disorder diagnosis. Knowledge and Information
Systems, Vol. 60(3), pp.1693–1724, 2019.

[23] Serrà, J., Pascual, S. and Karatzoglou, A., Towards a Universal Neural
Network Encoder for Time Series. In CCIA, pp. 120–129, 2018.

[24] Lewis, D.D. and Gale, W.A., A sequential algorithm for training text
classifiers. In SIGIR’94, pp. 3–12, Springer, 1994.

[25] Sugiyama, M. and Nakajima, S., Pool-based active learning in approxi-
mate linear regression. Machine Learning, Vol. 75(3), pp.249–274, 2009.

[26] Ranganathan, H., Venkateswara, H., Chakraborty, S. and Panchanathan,
S., Deep active learning for image classification. In IEEE International
Conference on Image Processing, pp. 3934–3938), 2017.

[27] Hao, Y., Chen, Y., Zakaria, J., Hu, B., Rakthanmanon, T. and Keogh, E.,
Towards never-ending learning from time series streams. In Proceedings
International Conference on Knowledge discovery and data mining, pp.
874-882, 2013.

[28] He, G., Duan, Y., Li, Y., Qian, T., He, J. and Jia, X., Active learning
for multivariate time series classification with positive unlabeled data. In
IEEE 27th International Conference on Tools with Artificial Intelligence,
pp. 178-185), 2017.

[29] Peng, F., Luo, Q. and Ni, L.M., ACTS: an active learning method
for time series classification. In International Conference on Data
Engineering, pp. 175-178, 2017.

[30] Huang, S.J., Jin, R. and Zhou, Z.H., Active learning by querying
informative and representative examples. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 36(10), pp.1936–1949, 2014.

[31] Ducoffe, M. and Precioso, F., Adversarial active learning for deep
networks: a margin based approach. arXiv preprint arXiv:1802.09841,
2018.

[32] Sener, O. and Savarese, S., Active learning for convolutional neural
networks: A core-set approach. arXiv preprint arXiv:1708.00489, 2017.

[33] Wang, Z., Yan, W. and Oates, T., 2017, May. Time series classification
from scratch with deep neural networks: A strong baseline. In Interna-
tional joint conference on neural networks, pp. 1578-1585, 2017.

