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Abstract. In many real-world applications, Time Series Data are cap-
tured over the course of time and exhibit temporal dependencies that
cause two or otherwise identical points of time to belong to different
classes or exhibit different characteristic. Although time series classifi-
cation has attracted increasing attention in recent years, it remains a
challenging task considering the nature of data dimensionality, volumi-
nousness and continuous updates. Most of existing Deep Learning meth-
ods often depend on hand-crafted feature extraction techniques, that are
expensive for real-world time series data mining applications which in
addition, require expert knowledge. In practice, training a quality clas-
sifier is highly dependent on large number of labeled samples which is
mostly inadequate in real-world time series datasets. In this paper, we
present a novel Deep Learning approach for time series classification
problems, called Transfer Active Learning (TAL) which jointly evalu-
ates informativeness and representativeness of a candidate sample-label
pair. TAL learns to map each input into a latent space from both sam-
ple and sample-label views which is more effective. For similar tasks,
TAL is able to reuse model skill with further reduction on feature ex-
traction costs. Extensive experiments on both classification datasets and
real-world prediction tasks demonstrate the efficiency of the proposed
approach on exponential reduction of training cost.

Keywords: Transfer Learning · Active Learning · Time series Classifi-
cation.

1 Introduction

The technological landscape is changing at high speed, with ability to capture,
process and disseminate huge amount of time-based data faster than before.
Increased demand for smart homes, self-drive cars, autonomous trading algo-
rithms, smart transport network, smart farming, weather forecast etc., uses a
datatype that measures how things change over time [1]. Its characterized by
data points indexed in time order and defined as Time Series Data (TSD) .
The unique feature of TSD is that the new appended data does not overwrite
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previous data entry in the database. Therefore, there is ability to track system
behavior changes over time as database insert and not update. Collecting such
event data can lead to large sized datasets over short period of time. On the
other hand, managing or analyzing such huge amount of data for practical world
application comes at great performance cost which requires high computation
power and complex methods.

Deep Learning (DL) is a well known Machine Learning technique with promis-
ing results in many prediction tasks. In particular the Convolutional Neural
Network (CNN) which sit at the core of most of the recent breakthroughs in
computer vision and data mining related tasks [2]. This is attributed by their
ability to learn hierarchies of abstract localized structured data [3]. Despite of the
impressive performance in analyzing big data, deep learning methods requires
vast amount of labeled data for training. The dependence on large training data
necessitates to develop methods for cutting down the classifiers training cost.
Research on techniques to reduce training costs include Active Learning (AL),
Transfer Learning (TL) and other statistical methods. Despite successful use of
DL for big data analysis, it has not widely been used on time series datasets. The
reasons for this absence might be: a) it is only recently that DL was proven to
work well for TSC and there is still much to be explored in building DL methods
for mining TSD [4] and, b) there is a lack of big, general purpose TSC datasets
like ImageNet or OpenImages.

TL is used to improve model performance by reusing skills acquired in other
related tasks especially where the target task has inadequate training data e.g.
a model trained to classify mangoes can be used to classify oranges. Currently
TL is used in many real-world DL applications [5]. Training is first done on
a ConvNet using a large dataset (e.g. ImageNet which contains 1.2M samples
with 1000 classes), and then transferring the ConvNet either by fine-tuning or as
fixed feature extractor on the target task. The performance of a classifier on the
target task can greatly be improved by using its experience on similar tasks. The
assumption is that the source task and the target task can share some hyper-
parameters depending on their nature [6]. When the source and target tasks are
unrelated, the knowledge transfer from source task may not be useful or even
compromise the performance of a target task through a negative transfer.

In DL its considered that the model can maximize the learning performance
by allowing it to choose the data points to learn from [7]. AL provides means for
iterative selection of data points the model wants to learn from [8]. This means
that for a classification task the model will not require all the data for training
but instead pick the most effective data-points for training. This is done by
evaluating either or both the informativeness or representativeness of a sample.
Whereas random and uncertainty sampling are often used, they suffer especially
when data has skewed categorical features which can result in selecting non-
informative or redundant samples. Classical statistical theory techniques such
as entropy and margin are used as an utility to measure sample informativeness,
however, they often fails to capture the data distribution information [9]. In this
paper, we propose a query selection strategy based on a combination of both
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uncertainty and information density. The querying strategy is then logically
coupled with TL which we now refer as Transfer Active Learning (TAL).

The rest of the paper is organized as follows: Section 2 highlights related
works on TL and AL; section 3 presents our proposed Transfer Active Learning
method; section 4 describes the experimental setup and respective results are
presented in 5; section 6 presents our perspective and future interests.

2 Related Works

Time Series Classification (TSC) is a mapping task from the space of possible
time based inputs to a probability distribution over the labels which can either
be: a) an univariate time series X = [x1, x2, ..., xT ] which is an ordered set of
real values with the length of X being equal to the number of observable time-
points T or; b) multiple time series X = [X1, X2, ..., XM ] which consist of M
observable per time-point with Xi ∈ RT . We now define a time series dataset
D = (X1, Y1), (X2, Y2), ..., (XN , YN ) as a collection of pairs (Xi, Yi) where Xi

could either be univariate or multivariate with Yi as its corresponding label. For
a dataset containing K classes, the label vector Yi is a vector of length K where
each element j ∈ [1,K] is equal to 1 if the class of Xi is j and 0 otherwise.

While the literature has sufficient works in which AL or TL is applied to
TSD, a combination of the two remain comparatively unexplored. We attribute
this to the fact that its only recent that TSC big datasets have began shaping
up. In real-world TSC settings, the key motivation for use of AL is the dearth of
training data. To account for lack of, or sparse training data, different techniques
are used either together with user-intervention settings or a fully-model based.
Considering the cost of training an effective model, methods such as random
selection may result in models with unrepresentative truth of the actual data
distribution. Therefore, it is particularly important to select samples that provide
a distinct view of how the different classes are separated in the data with regions
of greater uncertainty often sampled to define the decision boundaries [10].

Recurrent Neural Network(s) (RNN) are among the main methods used for
time series forecasting. The recurrent based methods suffer the following limita-
tions in the TSC tasks: a) they mainly predict an output for each time stamp
in the time series [11]; b) when they train from long data series, they suffer van-
ishing gradient problem [12]; c) they have high computational requirement and
hard to parallelize [13]. Successful application of DL in various domains moti-
vates researchers to adopt different strategies to overcome RNN limitations in
TSC tasks [4]. Majorly, these strategies are aimed at reducing the training data
annotation cost using AL and transfer of model skill among tasks using TL.

Effectiveness AL strategies are based on sample selection techniques which
include: a) uncertainty sampling with an objective to select an sample the clas-
sifier is most uncertain about as the most potential sample for labeling [14]; b)
variance reduction aims at minimizing the model error rate by selecting samples
with the minimum variance; c) expected gradient length that aims at querying
sample that causes the maximal change to the current model [8]. The most com-
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mon selection technique is the uncertainty sampling which considers the most
uncertain sample for labeling [15]. In all cases the focus is to develop classifi-
cation models with good generalization performance on unseen samples in the
problem domain.

In representativeness-based approach the queried samples tend to provide a
theoretical resemble of the overall distribution of the input space better. Un-
like error-based methods which tend to improve the error behavior on the ag-
gregate or uncertainty-based methods that query samples from most unknown
regions, representativeness-based methods tend to avoid outlier-like samples by
considering dense regions [15]. These methods combine both heterogeneity and
representativeness behavior of the queried sample from the unlabeled set. Mul-
tiple approaches can be combined for query selection in active learning [16].
Such approaches exhibit: a) informative properties of the queried samples either
close to the decision boundary of the learning model or far away from existing
labeled samples in order to bring new knowledge about the feature space; b)
representative behavior of the queried samples which should be less likely to be
an outlier data and should be representative of the input space [16]. Natarajan
and Laftchiev in their work combined TL and AL methods to predict personal
thermal comfort. The method leverages domain knowledge from prior users and
an AL strategy for new users that reduces the necessary size of the labeled
dataset. When tested on real dataset from five users, their method achieves a
70% reduction in the required size of the labeled dataset as compared to the
fully supervised learning approach [17]. The authors of [18] created an informa-
tiveness metric that considers the characteristics of time series data for defining
instance uncertainty and utility. Their experiments on UCR archive presents a
50% reduction of training data. Using min-max approach the authors of [19]
demonstrates viability of AL to reduce the annotation cost during training.

3 Transfer Active Learning

3.1 Transfer Learning

The TSC problem introduced in this paper is a semi-supervised classification
problem. The two main strategies of deep TL include: a) using pre-trained models
as feature extractors where objective is to leverage the pre-trained weight to
extract features and only the final layer is replaced and; b) fine tuning pre-trained
models by retraining some selected layers and freezing others. The question
of weather to freeze pre-trained layers or use them as fixed feature extractor
is determined by the size of available labeled set in the target settings that
can be used for training. Under normal circumstance, when the labels in the
target task are scarce, freezing is the best option to avoid overfitting. When
the labels are sufficient then fine-tuning is a better choice. A DL model Θ with
parameters and hyper-parameters can be represented as Y ≈ Θϑ(θ|D) where θ
are parameters and ϑ are hyper-parameters. D is training data and Y is class
labels. The objective is to find estimate of parameters θ that optimizes some loss
function L. The model performance based on loss function is dependent on ϑ,
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this implies that the parameters are also dependent on the hyper-parameters.
The parameters are learnt during training, but hyper-parameters are set of initial
model variables set before start of training and they include: number and size
of the ConvNet layers, learning rate, weight initialization, etc. A general TSC
problem can be expressed with the following equation:

Ct = f(w ×Xt−l/2:t+l/2 + b)|∀t ∈ {1, T} (1)

where C denotes the result of a convolution on a univariate time series X of
length T with a filter w of length l, a bias parameter b and a final non-linear
function f . To learn multiple discriminative features filters are applied on indi-
vidual univariate time series. Using the same filter values w and b in ConvNets,
we are able to find the result for all time stamps t ∈ [1, T ]. This is possible by
using weight sharing that enables the model to learn feature detectors that are
invariant across the time array.

3.2 Sample Selection

We consider actively selecting samples in batches, where the selection must be
constrained by some budget. Let xi represents a sample and yi where yi ∈
{1, ....K} represents the class label for xi, class in D we use the class probability
estimator to compute the estimate of a label. In order to avoid the problem of
generalization of unseen samples and to learn an accurate model, we present
a robust approach that uses both uncertainty and correlation utility. Since the
boundary class regions are often those in which samples of multiple classes are
present, they can be characterized by class label uncertainty or disagreements
between different learners. However, this may not always be the case, because
samples with greater uncertainty are not always representative of the data, and
may lead to the selection of outlier data points. This situation is especially likely
to occur in datasets that are very noisy. In order to address such issues, some
models focus directly on the error itself, or try to find samples that are represen-
tative of the underlying data. Based on the application, analyst goal, and data
distribution, different strategies have different tradeoffs and work differently.

Uncertainty Measure In uncertainty sampling settings, the model attempts
to select samples it is most uncertain about or what has not been seen so far.
Application of the approach range from simple binary classification problem
using Bayes classifier to multivariate classification using deep neural networks
[20]. For the binary classification the naive Bayes classifier is normalized to ensure
that the predicted probabilities sum up to 1. Therefore, the entropy objective
function En(X) for the binary class (k = 2) problem should be minimized and
can be defined as follows:

En(X̄) =

k∑
i=1

pi − 0.5 (2)
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Great entropy value indicate greater uncertainty therefore the objective func-
tion should be maximized. In case of imbalanced data the uneven distributed
classes are often associated with cost of misclassification denoted by wi. Each
probability pi is replaced by a value proportional to pi ·wi, with the constant of
the proportionality being determined by the probability values summing to 1.
Given a label space Y the uncertainty measure fu of independent and identically
distributed sample considering the features and the label expressed as:

fu(x) :

{
DU → R, (i) features view

(DU × Y )→ R, (ii) features-label view
(3)

to a real number space R. In 3: (i) the sample features are only considered in
computing the sample uncertainty while in, (ii) a combination of sample label
and features is considered in computing sample uncertainty. The three common
metrics used to define uncertainty includes least confidence, sample margin and
entropy. Least confidence consider the class label with the highest posterior
probability with an objective function to decrease the error rate. Sample margin
considers the first two most probable class labels using an objective function
of decreasing the error rate. One major deficiency of both least confidence and
sample margin is that they does not consider the output distributions for the
remaining class labels in the set. Entropy considers class label over the whole
output prediction distributions with an objective function to reduce the log-loss.
Using entropy the uncertainty of an sample xi in DU can be defined as:

fu(xi) = argmax
i
−

∑
i

P (yi|xi) logP (yi|xi) (4)

where P (yi|xi) denotes posterior probability of the sample xi being a member of
the ith class, which ranges over all possible labels yi. For a binary classification
task, the most potential samples are the ones with equal posterior probability
with respect to all possible classes.

Correlation Measure Majorly, AL query strategies use the uncertainty met-
ric measure to evaluate the utility of a independent and identically distributed
sample. However, when developing efficient AL methods, it is important to con-
sider sample distribution information. The sample diversity information aids in
querying most representative samples. This approach significantly improves the
query performance while avoiding selecting outlier samples. Different algorithms
for exploiting sample information exists. Majorly these algorithms are used in a
multi-label learning tasks when an sample has more than one label. This setting
is ideal for mining tasks on samples with complex structure. In this paper we
focus on exploiting the pairwise similarities of samples, therefore the informa-
tiveness of a sample is weighed by average similarity to its neighbors. Let xi
and xj be a pair of samples. To cope with the drawback of uncertainty based
selection, we consider the diversity by evaluating the correlation of the samples.
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Algorithm 1 Deep Transfer Active Learning (TAL)

Input: labeled data DL, available DU Parameter: θ, loss L, budget m Hyper-
parameters: ϑ
Output: Θ

1: Dtrain, Dtest ← DL

2: Θ ← ϑθ Initialize model
3: while m 6= 0 do
4: for each xi in DU do
5: u← fu(x)
6: c← fc(x)
7: Select sample x̂← argmax

i
(u · c)

8: Predict class ŷ ← Θ(x̂)
9: Update labeled set Dtrain ← x̂t, ŷt

10: Compute query loss Ltrain ← L(ŷ, y)
11: end for
12: for t = [1, T ] do
13: Get batch from D-train xt, yt ← Dtrain

14: Get train loss on each batch L← L(Θ(xt), yt)
15: θ ←: Update parameters
16: end for
17: Get batch from D-test x, y ← Dtest

18: Get test loss on test batch Ltest ← L(Θ(x), y)
19: Θ ←: Update model
20: m← m− 1
21: end while
22: return Θ

Given a label space Y the correlation measure fc between a pair of samples xi
and xj can be defined as:

fc(xi) =
1

DU

∑
xj∈DU/xi

fc(xi, xj) (5)

The value of fc(xi) represents the sample density of xi in the unlabeled set and
fc(xi, xj) represents the mean of the correlation for all j 6= i. The larger the
value, the more densely a sample is correlated with others. A low value of the
correlation measure indicates an outlier sample which should not be considered
for labeling.

Selecting the most informative and representative samples in a distribution
is very critical for improving the generalization performance of the classifier.
To do this we integrate correlation and uncertainty values together. The most
effective sample to label by the current model can be expressed as a product
of fu(xi) and fc(xi). As the uncertainty of a sample increases its potential for
being selected for labeling increases. To do this we can rank the selected samples
based on the utility value fi: with the top ranked samples in each subset being
the most effective samples to label. The query strategy discussed implemented
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in this paper is based on product utility fu(xi) · fc(xi). In Algorithm 1. learning
starts from a small labeled set DL with initialized parameters θ and hyper-
parameters ϑ for the model Θ and proceeds sequentially. For each iteration of
AL, uncertainty fu(x) and correlation fi(x) for each candidate sample xi are
computed. Then using a heuristic combination, the most informative sample is
selected for labeling. After that, the new labeled sample is directly added to the
training set DL and the model is updated. Classification on new data proceeds
in batch mode while computing loss for every iteration. Specifically classification
is now presented as a mapping function from the feature space F to the class
label space Y which can be expressed as P (x) : F 7→ Y . To improve the model
performance, we use a reward utility function for a single task of labeling an
sample x.

R(Y, x) =
∑
y

p(Y = y|x)r(p, y|x) (6)

where p represents the posterior probability of sample x belonging class y with
R() as a reward function. This formula accumulates the reward on each possible
label y.

4 Experimental Setup
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Fig. 1. Classification accuracy comparison on two real-world multivariate time-series
datasets

To validate the effectiveness of the proposed approach, experiments were
performed on both real-world application dataset for Rainfall in Austrialia &
Flight Delay and Cancellation and 30 multivariate UEA Time Series classifica-
tion 1 datasets. ResNet architecture was used to implement the experiments for
two reasons: a) it has been adopted in other recent time series classifications [21];
b) it performs comparably well in a large number of cases [22]. This is because

1 http://www.timeseriesclassification.com/
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skip-connections or residual connections are very efficiently with deeper networks
by allowing gradient flow directly through the bottom layers. The residual con-
nections allow skipping of multiple layers within deeper neural network [23].
In the experiment settings, the network main hyper-parameters are 4 residual
modules, 8 × 32 kernels and 128 filters. For all convolutional and dense layers
L2 regularization is used with 10−1 learning rate and categorical cross-entropy
used as loss function. Accuracy is used as a performance metric by recording
training loss and performance reporting on the testset. A sigmoid function was
used as a decision boundary to return a probability value between 0 and 1. The
boundary is set to p ≤ 0.5 for no rain and p ≥ 0.7 for rain. All experiments were
implemented in python with scikit-learn, PyTorch and on NVidia K80 GPU.
We further test our model on transfer skill using the 30 multivariate time-series
datasets. For each of the 30 datasets, we randomly partition it into two subsets,
70% training samples and 30% testing samples. From the training set, 10% is
sampled as labeled set and 100 samples are actively selected in every iteration.
To ensure uniform fine-tuning, only the last layer parameters are adjsuted to
match the target classes. In the end we ended up with total of 60 pre-trained
models i.e. 30 pair for each of the UCR dataset with Rainfall dataset and for
Flight dataset respectively.

The selected pre-trained models were then used to learn a more challenging
real-world problem using a multivariate rainfall in Austrialia2 and flight infor-
mation3 datasets. The objective is to predict whether or not it will rain tomor-
row. The dataset contains daily weather observations from numerous Australian
weather stations. We then empirically demonstrate that combining TL and Al
greatly improves performance. Firstly, we test the proposed method on two real-
world prediction datasets. On the Rainfall data we segregate it into categorical
and numerical variables. The date variable is denoted by Date column with 1000
total data points. The 4 categorical variables include: Location, WindGustDir,
WindDir9am and WindDir3pm. There are two binary categorical variables i.e.
RainToday and RainTomorrow with RainTomorrow being the target variable.
For categorical the date variable that has the highest cardinality of 3436 labels,
we performed some feature engineering to deal with high cardinality problem.
To do this we parse the date coded as object into datetime format. Then one hot
encoding is performed on all variables while adding dummy variables on missing
data. The other data pre-processing include removing of outliers and splitting
the data at 80% for training and 20% for testing. To avoid overfitting, impu-
tation was done over the training set and then propagated to the test set. For
missing categorical values, assumed input was done with most frequent value.

A set of 100 and 10000 samples was randomly selected as initial anno-
tated samples for rainfall and flight datasets respectively. On flight informa-
tion dataset, similar to above data preparation was carried out. The predicted
probabilities of k classes are delay. divert and cancelation which take the form
p1, ....pk based on current labeled examples. Since k = 3 the entropy is defined

2 https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
3 https://www.kaggle.com/usdot/flight-delays
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as follows:

En(X̄) = −
3∑

i=1

pi. log(pi) (7)

The data contain 100000 data samples spread over 9 categories. Each sample is
linked to the cause which includes: cancellation reason, air-system delay, security
delay, late-aircraft delay and weather delay.
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Fig. 2. Classification accuracy variation in percentage over the original accuracy and
on pre-trained models. In (a) classification is done on Rain dataset using a model pre-
trained on ElectricDevices dataset. Similarly, in (b) we compare the performance on
Flight dataset using a model pretrained with MelbournePedestrian and (c) on FordB
datasets

5 Results

We compare our proposed method with the following active learning methods in
the experiments: a) Random selection; b) Margin based sampling; c) proposed
method; d) QUIRE - a method inspired by the margin based active learning
from the mini-max viewpoint with emphasize on selecting unlabeled instances
that are both informative and representative [16]; e) DFAL method that se-
lects unlabeled samples with the smallest perturbation. The distance between
a sample and its smallest adversarial example better approximates the original
distance to the decision boundary [24]; f) Core-Set for non-uncertainty based AL
method [25]. Figure 1 shows classification accuracy of different AL methods with
varied number of queries on each dataset. As expected the baseline methods are
not as effective as hybrid methods. Both DFAL and Core-Set approach can out-
perform the Random and Margin methods but are worse than hybrid methods.
Random and Margin approach have little improvement on both datasets. The
performance of DFAL and Core-Set is impressive at the beginning, but loses the
edge as the querying goes on. The proposed method performs 4% better than
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QUIRE on both Rain and Flight datasets. We attribute the better performance
on the ability to jointly evaluate sample informativeness and representativeness
based on sample-label pair. In addition, the potential contribution of the cur-
rent sample candidate is incorporated on the strategy for the subsequent query.
Figure 2 presents the comparison on skill transfer using three best perform-
ing datasets. Its evident that skill transfer significantly reduce the training cost
while achieving the same or better performance as compared to using un-trained
model.

6 Conclusion

In this paper, we propose a novel Active Learning approach that jointly evaluates
informativeness and representativeness for multivariate time series classification
problems. Observing the structured nature of time series data, we propose a
bi-objective method based on sample-label pair views which is considered more
effective in reducing annotation cost. Learning is enhanced by Transfer Learn-
ing to further lower the learning cost by reusing model skill among tasks. One
key phenomena observed with many UCR datasets is network overfitting which
we attribute to the small size of the datasets. Since deep networks are highly
dependent on large amount of training data, generating synthetic data can help
mitigate the data size challenge. Also its important to note that with emerg-
ing time series big data repositories, the challenge of data size is a hot topic
for many researchers. In the future, we will study other hybrid transfer active
learning approaches.
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