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Abstract. In the digital world unlabeled data is relatively easy to acquire but
expensive to label even with use of domain experts. On the other hand, state-
of-the-art Deep Learning methods are dependent on large labeled datasets for
training. Recent works on Deep Learning focus on use of Active Learning with
uncertainty for model training. Although most uncertainty Active Learning se-
lection strategies are very effective, they fail to take informativeness of the un-
labeled instances into account and are prone to querying outliers. In order to
address these challenges, we propose a Budget Active Learning (BAL) algorithm
for Deep Networks that advances active learning methods in three ways. First,
we exploit both the uncertainty and diversity of instance using uncertainty and
correlation evaluation metrics. Second, we use a budget annotator to label high
confidence instances, and simultaneously update the selection strategy. Third, we
incorporate Active Learning in Deep Networks and perform classifications on un-
trained and pretrained models with two classical and a plant-seedling sets of data
while minimizing the prediction loss. Experimental results on the three datasets
of varying sizes demonstrate the efficacy of the proposed BAL method over other
state-of-the-art Deep Active Learning methods.
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1 Introduction

Current ICT technologies include Internet of Things [?], Remote Sensing [?], Cloud
Computing [?] and Big Data [?]. The continuous use of these technologies to collect,
monitor, measure, store and analyze data has led to a phenomena of Big Data [?] which
is in abundance of unlabeled data. Unlabeled data is relatively easy to acquire and it is
expensive to label even with use of domain experts. For example, its expensive to hire
dermatologists to annotate 129,450 skin cancer images [?]. Even when using state-of-
the-art computing resources, training a Machine Learning (ML) model on large data
sets can take long time. However, like other ML researchers [?], we believe that ML
algorithm does not need all of the available data for training. The main motivation for
use of Active Learning (AL) is that, if a learning algorithm can pick the data it want to
learn from, then a small set of selected data-points can be used for training. Typically
this process would involve randomly sampling large amount of data from underlying
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distribution for training a model. Collecting large amount of labeled data for training
is time consuming and expensive. AL provides methods for analyzing vast amount of
data with improved efficiency than other computing approaches, because of the abil-
ity to iteratively select the most informative data samples [?]. AL is a semi-supervised
method meaning that it does not require labels of all the samples in a dataset. In unsu-
pervised methods no labeled samples are used and for fully supervised all samples are
labeled. The decision of how much data to use for training a Deep Learning model or
alternatively the level of performance required is a resource management decision.

The emphasis in AL is to evaluate the informativeness of an instance, with an as-
sumption that an instance with higher classification uncertainty is more crucial to label.
This classical approach usually uses statistical theory such as entropy and margin to
measure instance utility, however it fails to capture the data distribution information
contained in the unlabeled data. This can eventually cause the classifier to select outlier
instances to label Therefore, its important to consider the classification uncertainty as
well as instances diversity in a population while developing an AL solution. In this pa-
per, we present a Budget Active Learning (BAL) for Deep Networks a new robust AL
method created by combining both uncertainty and correlation measure as an instance
informativeness evaluation metric. An instance is selected based on its informativeness
measure and then a budget annotator is used to label the instance. After each successful
labeling the model selection strategy is updated with the new labeled data information.
We perform various experiments on batched SVHN, CIFAR10 and plant-seedling-V2
datasets using Deep Networks models : Inception-V3, DenseNet and SqueezeNet.

The rest of the paper is organized as follows: Section ?? highlights related works.
Section ?? presents our proposed Budget AL algorithm. Section ?? presents the exper-
iments and results. Section ?? concludes the paper.

2 Literature Review

Successful investigations on ways to reduce labeling cost by use of AL has been going
on for years now [?]. AL helps reduce the training data by selecting the most informative
instances to label for training the model [?]. In a typical AL method, learning proceeds
sequentially, while actively querying the labels of some instances from the membership
queries. In AL there are three scenarios in which the ML algorithm will query the label
of an instance, they include: a) Membership Query Synthesis that generates constructs
of an instance from underlying distribution [?]; b) Stream-Based Selective Sampling
that uses query strategy to determine whether to query the label of an instance or reject
it based on informativeness [?]; c) Pool-Based Sampling that uses instances that are
drawn from a pool of unlabeled data according to some informativeness measure [?].
Many recent works focuses on use of pool-based sampling approach. The aim is to
query labels of the most informative instances, consequently reducing labeling costs
and accelerating the learning.

In recent time, there are a number of works focusing on AL strategies to reduce the
labeling cost. Yang et al. (2017) defines in [?] ways to segment biomedical images by
combining fully convolutional network and AL to reduce annotation effort by making
suggestions on the most effective annotation areas. In their approach, the network is
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used to provide uncertainty and similarity information which is used to evaluate the
most informative areas for annotation. Sener et al. (2017) in [?] defines AL as a core-
set selection problem by choosing a set of points that the model can use to learn in
a batch setting environment. A geometrical method is used to characterize the perfor-
mance of the selected subset. Wanh et al. (2016) in [?] introduced a framework for
updating the feature representation and the classifier simultaneously. A sample selec-
tion strategy is used to improve the classifier performance while reducing the manual
annotation. Huang et al. (2018) in [?] uses fine tuned pretrained model on most useful
examples. The examples are estimated based on potential contribution of an instance to
feature representation. Iscen et al. (2019) in [?] introduces a transductive method that
uses nearest neighbor graph to make predictions for generating pseudo-labels of the
unlabeled dataset. Wang et al. (2014) in [?] combines AL and transfer learning into a
Gaussian process based approach, and sequentially uses predictive covariance to select
most suitable queries from the target domain. In their study Kale and Liu in [?] uses a
combination of AL and Transfer Learning to learn labeled data from source domain for
classification in target domain. Kale et al. (2015)in [?] introduces a framework for gen-
erating effective label queries by performing transfer learning. The framework is able
to perform both the un-supervised and semi-supervised learning. Cai et al. (2019) in [?]
defines online video recommendation as a multi-view AL problem and they proposed
a framework to learn the mapping from visual view to text view. In their work Joshi et
al. (2009) proposes an uncertainty measure that generalizes margin based uncertainty
to the multi-class [?]. Chakraborty et al. (2011) propose a dynamic-batch-mode-AL
combined with selection criteria as a single formulation [?].

The conventional way to reduce the cost of designing Deep Learning model and op-
timizing its parameters is by exploiting available pretrained models. Use of pretrained
models trained on large benchmark dataset can helps reduce the training cost by utiliz-
ing the learned information. This is also referred to as Transfer Learning (TL) [?]. In
TL, instead of starting the learning process from randomly initialized model weights,
learning starts from patterns that have been learned when solving a different problem.
This way there is leverage on previous learnings.The information transfer between the
source and the target domain is done through feature sharing [?] and components trans-
formation [?]. Performing batch training with gradient descent optimization helps ad-
dress the challenge of limited computing power in deep learning. However, it is not
possible to train Deep Networks efficiently with large training set. To overcome this
challenge, a mini-batch gradient descent is performed by splitting the training set into
smaller sets and gradient descent is implemented on each of the batches. This approach
make training more faster and efficient. Classical state-of-the-art Deep Network models
include: AlexNet [?], NIN [?], ENet [?], ZFNet [?], GoogLeNet [?] and VGG 16 [?].
Modern models include: Inception [?], ResNet [?], and DenseNet [?]. These networks
have achieved impressive performance on computer vision, speech and text recognition
with effective representations for visual objects [?].

From the literature presented, recent AL works focus on selecting a single infor-
mative unlabeled instance to label using uncertainty metrics. One main shortcoming of
the above approaches is poor generalization for unseen instances in the domain. This
is due to the fact that they only select queries based on how the instance related to the
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classifier while ignoring unlabeled instances. Also with a large set of instances classi-
fication response time can be slow, therefore use of budget annotator will help reduce
active selection and labeling time.

3 AL WITH BUDGET ANNOTATION

In this section, we first describe the general AL algorithm, then we introduce our al-
gorithm detailing each component. We will use the following notation in this paper.
Let x represents instances and y represents labels, D = DL ∪ DU , DL denotes la-
beled instances where DL = {(x1, y1), (x2, y2), ...., (xn, yn)}, DU denotes unlabeled
instances where DU = {(x1, ?), (x2, ?), ...., (xn, ?)}, DH denotes high confidence in-
stances and Θ denotes the model defined by model parameters. For label space LS with
m classes inD the label ofDU can be expressed as yi = l, l ∈ {1, 2, ...,m}. Therefore,
instance selection criteria in this study will be based on probability of xi belonging to
lth class which can be expressed as:

p(yi = l|xi; θ) (1)

where θ denotes the CNN network weights and Equation ?? denotes the network soft-
max output for lth class.

Fu et al. presents a survey on instance selection and introduces in [?] an inefficient
general AL algorithm for Deep Networks. We present in Algorithm ?? a new gener-
alized form of AL. From lines 4 to 10, the model is iteratively defined according to a
budget m.

Algorithm 1: General Active Learning.

1 Input: labeled instance set DL, unlabeled instance set DU , a budget m;
2 Output: a model Θ;
3 Θ ← getModel(DL);
4 while |DL| < m do
5 DU ← D \DL;
6 for each xi in DU do
7 ui ← u(xi, Θ);

8 x∗ ← argmax
i

(ui);

9 DL ← DL ∪ {x∗};
10 Θ ← getModel(DL);

11 return Θ;

Figure ?? describes the conceptual representation of our method. The method pro-
gressively get data as input from the unlabeled set. While on initial model parameters,
the most informative instance is selected from the unlabeled set for labeling by the Bud-
get Annotator. On sucessful selection and labeling the labeled instance is added to the
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Fig. 1. BAL conceptual representation

training set and the model selection strategy is simultaneously updated and validated.
Most informative samples and the classified samples are applied on the classifier output.
The process to select and label instances will iterate until the budget is achieved while
simultaneously updating the selection strategy.

In order to avoid the problem of generalization of unseen instances and to learn an
accurate model, we present a robust approach by combining the strengths of different
learning strategies. An AL annotator use evaluation metrics to compute the instance
utility in order to select the most appropriate instance to label. The utility metrics con-
sidered in this work are uncertainty, correlation and informativeness measure, thus we
present four main components: a) an uncertainty measure, b) correlation measure, c) an
informative measure and d) and budget annotator.

3.1 Uncertainty Measure

Given a label space LS the uncertainty measure fu of a sample (features & label) can
be defined as:

fu(x) :

{
LS → R, (i) features view
(DU × LS)→ R, (ii) features-label view

(2)

to a real number space R. From Equation ??, (i) the uncertainty measure is computed
from sample features only while (ii) the measure is computed from both the sample
features and label. In our method we consider the uncertainty measure computed from
sample features and label view which is considered the most effective [?]. Out of the
three common uncertainty measure criteria namely least confidence, sample margin and
entropy, we considered sampling margin since it integrates the second most probable
class label in the uncertainty metric hence able to reduce the error rate by defining the
decision boundary. We therefore define uncertainty measure as:

fu(xi) = p(yi = l1|xi; θ)− p(yi = l2|xi; θ) (3)
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High uncertainty value fu implies current model have little knowledge of the instance,
and including it into the training set can help improve the prediction performance of the
model.

3.2 Correlation Measure

When developing efficient AL methods, its is critical to consider samples distribution
information [?]. The instance diversity information aids in selecting most representative
instances. In order to have more information about the unlabeled instances its appro-
priate to select a candidate instance in a more dense region. In addition, selecting an
instance to label only based on uncertainty measure may lead to redundancy, there-
fore exploiting sample instance diversity will provide an optimal instance to label. Our
method is based on the fact that the trade off between instance uncertainty and corre-
lation is an essential AL problem to address. Given a label space LS , we can define
different groups of correlation of an instance x in a set of unlabeled set as;

fc(x) :


DU ×DU → R, feature view
LS × LS → R, label view
(DU , y)× (DU , y)→ R, combined view

(4)

to a real number space R. In Equation ??, the combination of feature and label cor-
relation is called combined view. Different algorithms exist for exploiting this type of
combination [?]. Majorly these algorithms are used in a multi-label learning tasks when
an instance has more than one label. This setting is ideal for mining tasks on instances
with complex structure. On our work we focus on exploiting the pairwise similarities of
instances, therefore the informativeness of an instances is weighed by average similar-
ity to its neighbours. Let xi and xj be a pair of instances. To cope with the drawback of
uncertainty based selection, we then consider the diversity by evaluating the correlation
of the instances. Given a label space LS the correlation measure fc(xi, xj) between a
pair of instances in a sample xi and xj can be defined as:

fc(xi) =
1

DU

∑
xj∈DU

(xi, xj) (5)

The value of fc(xi) represents the instance density of xi in the unlabeled set. The larger
the value, the more densely an instance is correlated with others. A low value of the
correlation measure indicates an outlier instance which should not be considered for
labeling.

3.3 Informativeness Measure

Our motivation is that the most representative instances of a distribution can be very
informative for improving the generalization performance. Therefore, given correlation
measure fc(xi) and uncertainty measure fu(xi) the informativeness of an instance can
be defined as:
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fi(x) = fu(xi)× fc(xi) (6)

It can be rewritten as:
x∗ = argmax

i
(ui.ci) (7)

3.4 Instance evaluation and Budget Labeling

Instance evaluation is based on the instance informativeness in a set. In our method
we use query by a single model evaluation learned from the training set. The model is
trained on all labeled instances: feature and label views. After quering for an unlabeled
instance, a model prediction result is generated based on output probability distribu-
tion. Each instance xi = {f i1, f i2, ...f iq, yi} in labeled set DL = {x1, x2, ....xs} is
represented in a feature space F consisting of a feature space and its class label yi. The
size of DL is denoted by s and xi denoted the ith instance in DL. The prediction can
be denoted as a mapping function from the feature space F to the class label space Y
which can be expressed as;

p(x) : F 7→ Y (8)

The query strategy used in this work is based on the value of fi discussed in equation
6. Instances are ranked based on the value fi with top ranked instances being the most
appropriate to label. Budget annotator is used to pick classes which has maximum pre-
dicted probability as if they were true labels. For CNN implementation we use entropy
regularization, this way we are able to separate low density between classes. High con-
fidence samples from DH are selected and then assign predicted labels to them. For lth

category we define the budget label yi as follows;

y∗ = argmax
i

(p(yi = l|xi; θx,y )) (9)

Under the current distribution p(yi = l|xi; θ) each possible instance (x1, ?) from the
selected instances DH will be labeled with label yi. When yi = 1, xi is regarded as
a high confidence sample. The model update strategy is to learn a model based on the
information provided by model weights computed from model validation of the per-
formance. The Algorithm ?? describes the Budget Active Learning (BAL) with budget
annotation.

BAL is designed to train a classification model using a small labeled population
sample proportion. At first the BAL is trained using the initial set of labeled data DL,
using the initial weights for pretrained models and random initialized weights for un-
trained models. In Algorithm ??, the labeling is defined by the budget m with model
updates after each iteration (lines 4-16). Instance evaluation is done to identify the most
informative and representative instance to label (lines 5-8). This evaluation returns the
high confidence instances DH selected from the unlabeled population (lines 10-12).
For each of the selected instance, its label is queried and consequently the labeled set
is updated. The model selection strategy is updated with the learned parameters after
every iteration.
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Algorithm 2: Efficient Budget Active Learning (BAL).

1 Input: labeled instance set DL, unlabeled instance set DU , a budget m;
2 Output: model Θ;
3 Θ ← getModel (DL);
4 while |DL| < m do
5 for each xi in DU do
6 ui ← fu(xi);
7 ci ← fc(xi);

8 x∗ ← argmax
i

(u, c);

9 DH ← ∅;
10 for each i in DU do
11 x← argmax

i
fi(x);

12 DH ← DH ∪ {x};
13 yi ← getLabel(DH);
14 DU ← DU \ {yi};
15 DL ← DL ∪ {yi};
16 Θ ← getModel (DL);

17 return Θ;

4 EXPERIMENTS

To examine the efficiency of the proposed algorithm, we have considered public avail-
able datasets and state-of-the-art models.

4.1 Datasets

Three public available datasets namely CIFAR10 [?], Street View House Numbers
(SVHN) [?] and plant-seedling-V2 [?] datasets are used. The statistical information
of the datasets are summarized in Table ??. For large datasets (CIFAR10 and SVHN),
in regards to their size, we split the data into two sets; 20% as labeled set and 80% as
unlabeled set. Half of the labeled set is randomly sampled as the training set, and the
remaining as the validation set. The testing samples for each of the dataset is as shown
in the table. For the other dataset (plant-seedling-V2), due to its very small size, 40%
was randomly sampled as labeled set and 70% as the unlabeled set. In both cases, we
tried to minimize the size of the training data, in order to demonstrate the efficiency
of our budget AL method. For all data input, resize and normalize transformation was
done in order to match the models input sizes and shapes.

4.2 Fine-tuning Network Parameters

In order to suite the pretrained network to the dataset classes, the last layer (softmax
layer) is truncated and replaced with a layer that matches the dataset classes. Back
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Table 1. Selected datasets used in this work.

Data # instance # label # train # validation # testing
CIFAR10 [?] 50k 10 5k 5k 10k
SVHN [?] 73k 10 7k 7k 26k
plant-seedling-V2 [?] 6539 12 1k 807 807

propagation is performed to fine-tune the pretrained weights. 10 model updates were
carried out with a training batch size of 32 and and a learning rate of 0.05. The number
of model updates is sufficient to demonstrate the classification performance and effi-
ciency of our method over the other methods. The training rate is carefully considered
to ensure a good training stability and generalization is achieved.

4.3 Models

Table ?? presents six state-of-the-art Deep Networks models that have comparative few
model parameters (M) expressed in million. While Deep Networks provide state-of-
the-art prediction accuracy to many Machine Learning tasks, it comes at a high com-
putational cost [?]. Model with more parameters (i.e. bigger networks and learnable
parameters) is slower than a model with less parameters. The experiments were done
using three of these models which have achieved best performance in ILSVRC and
have lower parameters number (Inception-V3, DenseNet-169 and SqueezeNet). Instead
of only training an entire CNN from scratch (with random initialization) we considered
also transfer learning in order to leverage the training and then use ConvNet as an ini-
tialization and a fixed feature extractor for the task. In our experiments, we have used
pretrained models given by Pytorch v1.3.0. In this section we will briefly discuss the
architectures of the selected models.

Table 2. Deep Networks models comparison on ImageNet [?].

Model Input Size M Top-1 Acc (%) Top-5 Acc (%)
Inception-V1 [?] 224x224 5 70 90
Inception-V2 [?] 224x224 5 74 92
Inception-V3 [?] 299x299 24 78 94
Inception-V4 [?] 299x299 46 80 95
DenseNet-169 [?] bf224x224 14 76 93
SqueezeNet [?] 224x224 3 68 88
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GoogLeNet, a 2014 ILSVRC winner, was inspired by LeNet but implemented a
novel Inception module. Their Inception module performs series of convolutions at dif-
ferent scales and subsequently concatenate the results. The module is built with several
small convolutions. There has been tremendous efforts done to improve the perfor-
mance of this architecture: a) Inception-V1 [?] has 3 different sizes of filters (1x1, 3x3,
5x5) and max pooling. The outputs are concatenated and sent to the next Inception
module; b) Inception-V2 [?] and Inception-V3 [?] factorize 5x5 convolution to two
3x3 convolution operations to improve computational speed. A 5x5 convolution is 2.78
times costly than a 3x3 convolution; stacking two 3x3 convolutions leads to a boost in
performance; c) In Inception-V4 and Inception-ResNet the initial set of operations were
modified before introducing the Inception blocks. The figures ??, ?? and ?? show the
prediction accuracy comparison between our approach and other baseline methods on
previously cited models.

When Deep Networks start converging, then degradation become apparent chal-
lange to performance. Thats means as the network depth increases, the accuracy gets
saturated and then degrades rapidly. Deep Residual Neural Network (ResNet), a logical
extension of DenseNet [?] created by Kaiming et al. [?] introduced a novel architec-
ture with insert shortcut connections. The connections turns the network into a residual
network. This was a breakthrough which enabled the development of much deeper net-
works. The residual enables the network learn to adjust the input feature map. Following
this intuition the authors proposed a pre-activation variant using the insert shortcut con-
nections by the gradients flowing through the shortct connections to the earlier layes
unimpended. Each ResNet block is either 2 layer deep or 3 layer deep. It achieves a
top-5 error rate of 3.57% which beats human-level performance. DenseNet which is a
logical extension of ResNet, brings improved efficiency by concatenating each layer
feature map to every successive layer within a dense block [?]. This enables feature
reuse within the network by allowing later layers within the network to directly lever-
age the features from earlier layers. Now the feature-maps of all preceding layers can be
used as inputs, and its own feature-maps can be used as inputs into all subsequent lay-
ers, this helps alleviate the vanishing-gradient problem, feature reuse and consequently
reduce number of parameters.

In recent times with use of Internet of Things and Cloud Computing, there is con-
stant communication between the servers and the clients. This brings a need for a
smaller sized model with similar or improved efficiency as the state of the art models.
SqueezeNet [?] achieves AlexNet-level accuracy with 50x fewer parameters [?]. Ad-
ditionally with model compression technique one can achieve 510 times smaller than
AlexNet compression. In order to reduce the number of parameters by 9 times, a 3x3
filters are replaced with 1x1 filters. Subsequently, number of input channels is reduced
to 3x3 filters. Finally, the feature map is down-sampled in order to have larger activation
maps.

4.4 Results

The proposed approach was implemented on NVIDIA Tesla P100 GPU. Using few
model update iterations, our method demonstrates impressive prediction accuracy over
the other Deep AL methods. In the experiments losses and accuracies per model update
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Fig. 2. Prediction comparison on CIFAR10 dataset.

were monitored while comparing the following Deep Active Learning baseline meth-
ods:

– Budget AL (BAL): our proposed method.
– Core-Set AL (CSAL): method proposed in [?] which defines the AL problem as

a competitive sample core-set selection which is then applied to a CNN in a batch
setting.

– Deep Bayesian Active Learning (DBAL): a Bayesian framework proposed in [?]
for high dimensional data which considers Deep Learning problem of dependence
on big amount of data.

– Adversarial AL for Deep Networks (AAL): a margin based approach proposed
in [?] for Deep Networks with intention of reducing the number of queries to the
oracle during training.

Impressive performance is recorded by the methods on the pretrained models as com-
pared to the un-trained models. In general, from the results the pretrained DenseNet and
Inception models on CIFAR10 leverage much better than SqueezeNet on same dataset.
This means that the model weights for DenseNet and Inception model leverage better
that those of SqueezeNet to this type of dataset. On all the training instances, BAL
performs better than all other baseline active learning methods as shown in Figure ??.
On the un-trained models the prediction performance seem to edge up as the model
selection strategy gets updated.

On SVHN dataset, all Deep Active Learning methods performs poorly except on un-
trained DenseNet and Inception models. The performance on these models improves
after the fifth model update. This is so because initially the models weights do not
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Fig. 3. Prediction comparison on SVHN dataset.

perform well with this dataset but after several self tuning there is improved prediction
accuracy. Following the poor performance exhibited in SquezeNet on both CIFAR10
and SVHN data, we did not conduct experiments with SqueezeNet on the plant-weed
detection problem.

Plant Weed Detection Agriculture is a critical for human survival and it remains a
major driver of many economies around the world. With increase demand for food and
other agricultural production challenges, there is sure need to improve on production
output. Current agricultural machine vision solutions are faced with accurate and reli-
able large scale weed detection. In this section we present a plant seedling weed detec-
tion problem using a plant-seedling-V2 dataset [?]. The plant-seedling dataset contains
6539 images from 960 RGB unique seedlings of plants belonging to 12 species at differ-
ent growth stages with a physical resolution of 10 pixels/mm. Because of small dataset
available, 15% of the set was used for training our algorithm for weed identification and
12% used for validation, the rest of the data used as unlabeled dataset. In addition, in
an effort to avoid overfitting the convolutional base of the networks was frozen and its
output used in the classifier.

In Figures 4(a) and 4(c) we compare our method with other Deep Active Learning
methods in both pretrained Inception-V3 and DenseNet-161 models on plant-seedling
dataset. The results indicate the efficiency of our method as compared to performance
of other Deep AL methods discussed. Our method is able to adapt better with the pre-
trained parameters and quickly provide better prediction. Figures 4(b) and 4(d) show
the performance on the untrained versions of the models on the same dataset. Using
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(b) Untrained Inception-V3
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(c) pretrained DenseNet-161
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(d) Untrained DenseNet-161

Fig. 4. Prediction comparison on plant-seedling-V2 dataset.

the initial pretrained parameters to initialize the models yields to better prediction accu-
racy quickly within few model updates. The main results are shown in Figures ??. and
??. Overall, BAL (in blue line) is able to outperform other Deep AL methods on ma-
jor datasets including the plant-seedling dataset. By comparing our method with other
methods, we notice an apparent increase in classification accuracy which indicate that
using both instance uncertainty and correlation measure is more efficient. BAL is able
to pick the most representative candidate point from the unlabeled population. In ad-
dition, from the plant-seedling shown in Figure ??, we observe the superiority of our
method tends to be more obvious even when the number of instances is small. Its clear
that our method can generalize better than other discussed methods by selecting the
most representative instances with only few queries.

5 CONCLUSION

The main objective of AL is to label the most informative instance in order to achieve
high prediction accuracy with minimum cost. Use of AL in recent technologies is an
active research area with efforts to improve on the prediction accuracy while using less
data. In this paper, we propose a BAL method for cost-effective training of Deep Net-
works. Instead of training from scratch with random initialization, a pretrained model
parameters can be used to initialize a model to a new target task by fine tuning with
a few actively queried examples, thus significantly reducing the cost of designing the
network architecture and cost of labeling a large training set. Using BAL, classification
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task was able to record 85% prediction accuracy quickly using fairly small amount (10
to 20% of data) of data as training data as compared to conventional AL methods on
Deep Network Models. In the future, we plan to apply the approach on more real life
datasets and more pretrained models with variational dataset. In addition, the feature
transformation on each layer will be further studied while considering different types
of data input.
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