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Abstract—This work is dedicated to the analysis and identifi-
cation of hand movements using the surface electromyography
signals (sEMG) of the forearm muscles. We present the combi-
nation of multiclass SVM with sigmoid function and a single
feature to identify hand grasping movement. Myo Armband
sEMG sensors are used for data acquisitions and two different
protocols are defined: static and dynamic ones. The sequences of
binary grasping movement, open/close, and multi grasping ones,
rest/open/closed, are studied. Entropy is used as a single feature
of sEMG signals and classification is performed by using SVM
multiclass algorithm with one single optimization processing.
A comparison between different protocols (dynamic and static
ones) is realized. Furthermore, a discussion is proposed about
overlapped window size and window step to calculate entropy
characteristics. Our solution for hand gesture classification sim-
plifies the signal analysis, increases the multi-gesture separability
and has a low computational cost.

Index Terms—Robotic hand control system, Electromyography,
Entropy, Multiclass Support Vector Machine

I. INTRODUCTION

The present work is part of a larger project called ProMain
about the development of a precision hand prosthesis [1],
[2]. As 86 % of daily human hand activity is dedicated to
grasp objects [3], the developed prototype deals with these
kind of movements. ProMain robotic hand belongs to the new
generation of hand prosthesis using soft robotic concept. It
incorporates flexible interaction with environment and smart
materials. Furthermore, we aim to design a patient friendly
smart hand prosthesis.

A developed hand prosthesis control system consists of the
following steps: i) acquisition of data regarding the muscles
activation; ii) data windowing adapted to real-time analysis;
iii) feature extraction; iv) gestures classification via Machine
Learning algorithm; v) a robotic hand control in real-time for
activation of the prosthesis.

sEMG sensor is a simple and attractive way to control hand
prosthesis. The sEMG is a non invasive method to capture
muscle activities. In this work we use a wearable device called
MyoArmbandTM developed by Thalmic Labs [4]. The device
is placed around the forearm near the elbow joint. The sensors
are placed on skin regions immediately above the muscle
tissue and it measures the superficial voltage during muscle
contractions. Since the muscle activity is a superposition of

individual contributions of muscles contractions, the collected
sEMG signals represent an encoded information about the
subject’s movement intention [5].

Characteristics or features are extracted from sEMG signal
recovering informations about movement intention. There are
several features often used to analyse the sEMG signals in time
and frequency domains, such as: mean absolute value (MAV),
zero crossing (ZC), slope sign changes (SSL), waveform
length (WL) and autoregressive coefficients (AR), entropy
(H), wavelet transform coefficients (WT). The comparison
between different features is studied in works [1], [6]–[9]. The
entropy is the most adapted feature to characterize a dynamic
movement and it improves the efficiency of gesture recognition
in real-time applications [1], [10], [11].

Entropy comes from information theory as a measure of the
complexity and randomness of a system [12]. This magnitude
allows us to quantity the amount of information in a mathe-
matical way. In case of guaranteed event, the entropy takes its
minimum value since the information content is low. A less
predictable system has a higher entropy. The entropy features
have been successfully applied as a unique feature to sEMG
analysis for the hand motion classification [1], [13]–[15]. In
this work, features are extracted from sliding overlapped win-
dows with predefined lengths to produce gesture classification
in time. The sigmoid function is used as high-pass filter to
decrease the noise in entropy.

Once features are extracted, Machine Learning algorithms
are applied for gesture classification. Nowadays, Support Vec-
tor Machine (SVM) is one of most popular classifiers. It
defines the optimal hyperplane in the feature space between
distinguished classes of data. Originally, this approach has
been designed for binary classification and was expanded
for multi-classification. Commonly, the multiclass SVM is
reduced to multiple independent binary classification problems
such as one-vs-rest or one-vs-one. However, these algorithms
do not capture the correlations between different classes.
Instead, the multiclass SVM ”all-together” deals with the
minimisation of a single objective function. The Crammer-
Singer formulation uses a generalized notion of the margin to
multiclass problem [16]. Then, the dual quadratic optimisation
problem is decomposed into multiple small optimisations
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problems to ensure a memory and time efficiency. Then, the
reduced individual optimisation problem is solved. In this
work, the reduced problem is solved by an exact and efficient
method using Euclidian projections onto the positive simplex
proposed by Blondel et al. [17].

In order to apply the SVM classification, the data are
separated on the training and validation dataset. Initially, the
model is fitted using the training dataset and then the fitted
model is evaluated on the validation dataset. The robustness of
classification model is estimated by the k-fold cross-validation.
Thus, the data set is divided into k folds or groups. The first
fold is the validation set and the remaining k-1 folds are
the training set. This procedure is repeated k times, and the
average of the classification error is obtained.

As the studied hand prosthesis are dedicated to grasp
objects, we are limiting our attention on the Open/Close and
Rest/Open/Close hand gestures classification. The supervised
learning is sensitive to the data used as a training set and the
wrong labeled data drives to the classification error. Moreover,
Lorrain et al. [18] reported that transitions between various
movements and the rest position influence the classification
process and should be taken in consideration. To improve
the gesture recognition by SVM, we propose a new data
acquisition protocol which allows us to get perfectly labeled
data and to avoid the transition zones. Furthermore, entropy is
used as a unique feature to increase the rapidity of movement
recognition. The influence of overlapped window parameters
(window size, step increment) on the classification score is
also discussed.

In the first section, we present the materials and data acqui-
sition protocols. The second part deals with features extraction
and gesture classification algorithm. The next section presents
the result of training and validation of SVM classifier for grasp
gestures and some conclusions are proposed in the last section.

II. MATERIALS AND DATA ACQUISITION

A. Equipement

In this work the wireless MyoArmband is used and 8
channels of 8-bit sEMG signal are recovered. The device is
connecting to the computer via Bluetooth Low Energy (BLU)
protocol and streams datas at 100 Hz sampling rate. The
connection between the computer and the Thalmic Myo is
made via a Python software MyoRaw.

B. Experimental Protocol

Three normally limbed right-hand subjects are involved in
this study. MyoArmband is located around the forearm close
to the elbow. To insure repeatability of the experiments, the
MyoArmband sensors are placed in the same way for each
subject. Therefore, sEMG sensors are labeled with IDs from
1 to 8 as shown in Fig. 1. The channel N◦4 is placed in the
prolongation of the middle finger followed by channel N◦3 in
clockwise and channel N◦5 in counter clockwise directions.
According to the location of the bracelet, the muscles directly
linked with sEMG measurements are presented in Fig. 2.

Fig. 1: MyoArmband sEMG sensors labeling.

Fig. 2: Muscles contribution according to MyoArmband place-
ment.

During the experiment, each subject sits on a chair, with his
elbow on the table, keeping an angle of approximately 90◦ at
the elbow joint. Two types of data acquisitions are studied in
this work named ”dynamic” and ”static” protocols.

During the ”dynamic” protocol, a subject performs alternate
hand gestures (open/close (OC) or rest/open/close (ROC)).
Each subject realizes 6 tests which are saved in ascii files and
the total duration of each file is 18s. Each OC test contains
a sequence of 4 alternative movements with 2s per position
while ROC test contains 3 gestures with 2s per position. A
3s pause is made between each test to avoid muscle fatigue.
The respect of protocol instructions is required for correct data
labeling and it is a crucial point for data training.

To avoid wrong data labeling due to delay during exper-
iments, we propose a ”static” protocol which consists of a
single movement: open, close and rest position acquisition.
According to static protocol, the subject keeps a static hand
position (open, closed, rest) for 5s followed by 3s of rest.
Each subject performs six acquisitions per gesture with a 5s
duration. Then, a numerical algorithm is developed to create
a virtual dynamic gesture by slicing the collected data by
static protocol. The duration of movement and the movement
sequences (OC, ROC, . . . ) may be chosen arbitrary. It allows
us to create numerically a various alternative movements with
different gesture sequences and duration. It also guarantees a
perfect data labeling.

An example sEMG data acquired with our dynamic protocol
for one test of ROC gesture is presented in Fig. 3. In this
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figure, the 8 channels present different behaviour of muscle
activity. During the rest hand position, all sensors receives
small amount of informations and certain sensors, such as 4,
6 and 7 in this example, capture few information along the
test. Sensor 1 has a clear pattern and access to protagonist
muscles activity while sensors 2, 3 and 8 measure antagonist
muscles activity. The sensor activation depends on the position
of myo armband and may vary from user to user.

During data acquisition, protocol instructions are shown on
the screen with sound notification at each transition. Then,
the sEMG data are labeled in respect with protocol time
sequences. In the Fig. 3, the clear grey zones correspond to
the rest hand position, middle grey is an open hand and dark
grey refers to the closed hand. We observe a delay in subject’s
movement compared to protocol time that leads to the wrong
data labeling. The static protocol improves the data labeling
and is discussed in the further section.
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Fig. 3: sEMG signals during dynamic acquisition from 1 to 8,
black, red, blue, orange, pink, green, swamp, purple

III. FEATURE EXTRACTION AND GESTURE
CLASSIFICATION

A. Entropy

In this work, the Shannon entropy is used to quantify how
much information is present in a segment of the signal. In the
case of MyoArmband, we have eight sEMG signals (si)i=1,..,8

with W values. To detect the hand motion in time, we use
a concept of overlapped window with N values (N < W )
which is advanced in time with a certain window step n. The
Shannon entropy is calculated for each window as follows:

H(si) = −
Nh�

k=1

pk log2 pk, i = 1, .., 8 (1)

MyoArmband bracelet employs a 8-bit analog to digital
converter, and the output value is between {−127, 128}. A
parameter size of the histogram, Nh, is introduced to define
a number of possible classes to arrange the output signal.
Then, the probabilities of occurrence pk are defined as a
ratio between a number of the absolute occurrence of signal

values within one class (Nk)k=1,..,Nh
and the total number of

possible events N as follows:

pk =
Nk

N
, for k = 1, ..., Nh (2)

It can be denoted that we have
�Nh

k=1 Nk = N . Since we use
a binary digits, the logarithm base is set to 2 in Eq. (1).

The entropy takes its maximum value when each class
contains the same number of events leading to disordered
system with H = log2 Nh. The maximum value of entropy
increases with the number of classes or size of histogram. For
a deterministic distribution, i.e. when one class contains all
values, the entropy takes its minimum value H = 0.

As the data are obtained from experimental tests, noise can
affect the data classification. To avoid this problem, a weighted
function is added in entropy calculus. Since the sEMG signal
is centered around zero, a sigmoid function is chosen as a
high-pass filter and defined as follows :

σ(u) =
1

1 + e−µ(u−β)
(3)

where u ∈ [0, 1] is the input value, µ is the steepness of the
curve and β is the Sigmoid’s midpoint. In this work, we use
µ = 20 and β = 0.15 in order to filter values below β.

Fig. 4 presents the comparison between dynamic (on the
left) and static (on the right) protocols for ROC movements.
The signal and entropy of the two most active sensors 1 and
3 are compared. The entropy is calculated for both signals
with window size = 25 and step size = 10 and using sigmoid
function. As it was mentioned above, the delay in dynamic
protocol is found again while a static one shows a perfect
agreement between labeling and movement.
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Fig. 4: Comparison between two sEMG signals and its entropy
for dynamic (left) and static (right) protocols

B. SVM

Multiclass SVMs classifier is a decision function that maps
each instance of input vector x ∈ Rd to one of the k classes
as follows:

ŷ = argmax
m∈[k]

wT
mx (4)
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where ŷ is the estimated class, w is a matrix (k, d) which
defines a separating hyperplane and the dot product wT

mx is
the projection of the training set x and also a score for the mth
class. According to Eq. (4), the predicted label is the index of
the row of matrix w with a highest score.

The values of wm are the solutions of the following
optimisation problem:

min
w,ξ

1

2

k�

m=1

||wm||2 + C
N�

i=1

ξi (5)

subject to: ∀i,m wT
mxi − δyi,m −wT

yi
xi + 1 ≤ ξi (6)

where C > 0 is a regularization parameter. The dual
problem to Eq. (5) is given in [16], [17] and for each αj ,
jth row of matrix α, we have:

max
α=[αij ]

−1

2

N�

i=1

K(xi, xj)(αi · αj) + C
N�

i=1

αi · 1yi
(7)

subject to: ∀i αi ≤ 1yi
and αi · 1 = 0 (8)

where K(·, ·) is the kernel function and equal to one, and 1i

is the vector whose components are all zero except for the ith

component while 1 is the vector whose components are all
one. Then, the decision function Eq. (4) becomes:

ŷ(x) = argmax
m∈[k]

�

i

αi,mK(x, xi) (9)

IV. TRAINING AND VALIDATION

A. Cross validation using dynamic protocol

In this section, classification for OC and ROC hand gestures
using the dynamic protocol described in Section II-B is
proposed. The k-fold validation with k = 3 is used for each
subject.

1) OC gesture: Firstly, we consider the classical OC hand
gesture classification for three subjects. Since the window
and step sizes influence the training score, a Particle Swarm
Optimisation algorithm is used to identify the best couple
of these parameters. Numerous optimisations figure out three
couples of parameters which give a highest score with multiple
occurrences. Therefore, window and step are set to (40, 28),
(25, 10) and (13, 5) and the histogram size is set to 11.
Results are presented in Tab. I and show that training and
validation scores are stable with an error limited within 10%,
independently from subject and each window/step sizes.

2) ROC gesture: In this section we consider classification
of ROC hand gesture. The entropy is calculated using the same
pairs of window and step sizes as in the previous section.
The cross-validation accuracy of multiclass SVM classification
is presented in Tab. II. Obviously, the addition of rest hand
position increases the classification error up to 20% compare
to OC binary classification which is within 10%.

Fig. 5 shows the decision making process using SVM
multiclass classification. We attribute label 0 to rest hand
position, 1 to open hand and 2 to closed hand. The upper
part of the graph shows the dot product used in Eq. (4)
which corresponds to the projection of the training set on

TABLE I: k-fold validation for OC gestures using dynamic
protocol as training and validation set

Window Step Training score [%] Testing score [%]
Subj 1 40 28 94− 98 95− 98

25 10 94− 96 93− 96
13 5 91− 93 90− 94

Subj 2 40 28 92− 97 91− 97
25 10 93− 94 92− 96
13 5 92− 94 91− 95

Subj 3 40 28 90− 94 88− 94
25 10 92− 93 91− 93
13 5 91− 92 90− 92

the axes of the three classes. The dot product with a highest
value determines the winning class. The bottom part of Fig. 5
illustrates the classification score: red bullets signify that the
movement classification is correct while the black bullets
correspond to wrong detections. Obviously, some errors occur
in the distinction of neutral and open hand positions especially
in the beginning and the end of each movement. As reported
in Section IV-A1, the open and close movements are separable
because of antagonist muscles activity. Fig. 3 shows that the
neutral hand position should have no muscle activity which is
difficult to achieve during ”dynamic” data acquisition. Entropy
features cannot capture the change of amplitude during muscle
activity and the delay in the hand position changes lead to the
wrong data labelling.

To avoid human error during data acquisition and to improve
labeling of training dataset, we propose to use the static
protocol.

TABLE II: k-fold validation for ROC gestures using dynamic
protocol as training and validation set

Window Step Training score [%] Testing score [%]
Subj 1 40 28 88− 90 89− 92

25 10 89− 90 86− 92
13 5 87− 90 85− 92

Subj 2 40 28 77− 86 76− 90
25 10 83− 89 80− 91
13 5 84− 88 82− 91

Subj 3 40 28 80− 87 80− 93
25 10 83− 89 80− 94
13 5 83− 88 79− 90

B. Gesture classification using static protocol

In this section we propose to improve the data for training
step using the static protocol described in Section II-B. Each
subject has performed three individual positions: O, C and
R. Then, these data are numerically transformed in dynamic
movement composed of two or three gestures (OC, ROC).
The initial static data are sliced in packages of 200 samples
corresponding to 2s similarly to the sequence of the dynamic
protocol. The features are calculated for the same pairs of win-
dow/step sizes as in the case of dynamic protocol classification
to compare both approaches.
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Fig. 5: Projection and prediction ROC movement using dy-
namic protocol

1) OC gesture: in this section we are interested in OC hand
gesture classification using static protocol as training set. The
training set is created numerically form the static protocol and
contains 12 sequences of OC gestures with 2s per gesture.
Then, the SVM classification is validated on the OC dynamic
protocol. Tab. III presents the results and the classification
error is within 10%, similarly to the dynamic classification
score shown in Tab. I.

The projections of features and the separating hyperplanes
for each pairs of sEMG channels are presented in Fig. 6 for
dynamic OC protocol and Fig. 7 for static OC protocol. The
red dots correspond to the open hand gesture and the green
ones are associated to the close hand position. Obviously, there
are some differences between the features and the separating
hyperplanes and Fig. 7 shows that features projections in case
of static protocol are more distinct and then easily separable.
These results confirm the improvement in training dataset
provided by static protocol.

TABLE III: Cross validation for OC gestures using static
protocol for training and dynamic protocol as validation set

Window Step Training score [%] Testing score [%]
Subj 1 40 28 89 96

25 10 94 95
13 5 97 92

Subj 2 40 28 91 92
25 10 95 92
13 5 98 92

Subj 3 40 28 87 91
25 10 93 92
13 5 96 91

2) ROC gesture: in this section, the same procedure is
proposed for multiclass ROC hand gesture classification. The
training set is rebuilt numerically from the static protocol. The
training test contains 12 ROC sequences with 2s per gesture.
The validation set is dynamic data which represents 30% of
training set. The classification accuracy is presented in Tab. IV.
The training error is within 10% for all subjects except for the
window/step 40x28.

Fig. 6: Projection of the entropy of sEMG signal from OC
dynamic protocol and hyperplane on the eight axes

Fig. 7: Projection of the entropy of sEMG signal rebuild from
OC static protocol and hyperplane on the eight axes

Fig. 8 illustrates the classification result for the static
training set. We still attribute label 0 to neutral hand position, 1
to open hand and 2 to closed hand. The upper part of the graph
shows the dot product used in Eq. (4) which corresponds to the
projection of the training set on the axes of three classes. The
row of w with a highest dot product determines the number
of winning class. The bottom part of Fig. 5 illustrates the
classification score: red bullets indicate the correct movement
classification and the black bullets correspond to the wrong
detection.

This graph shows that the main error occurs at the end
of each movement due to the use of overlapped window.
Indeed, the decision point corresponds to the end of overlapped
window and wrong decision is still possible in this transition
phase. To decrease this error, derivative of the entropy can be
used to detect the onset of the gesture. Furthermore, individual
error can be removed using major vote, as used in [18], [19].

3) OC gesture testing using ROC classifier: this last sec-
tion is dedicated to the verification of the multiclass static
ROC classifier on OC dynamic protocol. The classification is
validated on the OC dynamic protocol which contains 30% of
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TABLE IV: Cross validation for ROC gestures using static
protocol for training and dynamic protocol as validation set

Window Step Training score [%] Testing score [%]
Subj 1 40 28 90 94

25 10 95 91
13 5 97 90

Subj 2 40 28 81 84
25 10 95 90
13 5 97 91

Subj 3 40 28 86 82
25 10 91 84
13 5 95 77
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Fig. 8: Projection and prediction ROC movement using static
protocol

training set. The testing score is presented in the Tab. V. The
OC testing error is less then ROC testing error (see Tab. IV)
because the main difficulties in classification is related to the
separation of rest and open hand positions.

TABLE V: Cross validation of ROC classification based on
static protocol using OC dynamic training set

Window Step Testing score [%]
Subj 1 40 28 94

25 10 91
13 5 87

Subj 2 40 28 91
25 10 93
13 5 91

Subj 3 40 28 94
25 10 90
13 5 89

V. CONCLUSION

In this paper, SVM multiclass classification is proposed us-
ing classical k-fold cross validation of grasping hand gestures
recognition. Open/Close and Rest/Open/Close combinations
are proposed and compared using entropy as a single fea-
ture combined with sigmoid high-pass filter. Two different
protocols are proposed to create the training dataset for the
classifier. The dynamic protocol leads to wrong classification
due to human error while the static protocol improves the

obtained results. The influence of size and step of the window
for entropy calculation has been studied and the results for
training and test present an error around 10%.

The classification accuracy could be improved using major-
ity vote which allows to avoid the error in the middle of hand
position. Size and step windows have to be chosen with respect
to acceptable delay for online classification and command of
hand prosthesis.
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