
Metadata of the chapter that will be visualized in
SpringerLink

Book Title Artificial Intelligence XXXV
Series Title

Chapter Title Confidence in Random Forest for Performance Optimization

Copyright Year 2018

Copyright HolderName Springer Nature Switzerland AG

Corresponding Author Family Name Senagi
Particle

Given Name Kennedy
Prefix

Suffix

Role

Division Department of Information Technology

Organization Dedan Kimathi University of Technology

Address Nyeri, Kenya

Division

Organization LIASD, University of Paris8

Address Saint-Denis, France

Email kennedy.senagi@dkut.ac.ke

Author Family Name Jouandeau
Particle

Given Name Nicolas
Prefix

Suffix

Role

Division

Organization LIASD, University of Paris8

Address Saint-Denis, France

Email n@ai.univ-paris8.fr

Abstract In this paper, we present a non-deterministic strategy for searching for optimal number of trees (NoTs)
hyperparameter in Random Forest (RF). Hyperparameter tuning in Machine Learning (ML) algorithms
optimizes predictability of an ML algorithm and/or improves computer resources utilization. However,
hyperparameter tuning is a complex optimization task and time consuming. We set up experiments with
the goal of maximizing predictability, minimizing NoTs and minimizing time of execution (ToE).
Compared to the deterministic algorithm, e-greedy and default configured RF, this research’s non-
deterministic algorithm recorded an average percentage accuracy (acc) of approximately 98%, NoTs
percentage average improvement of 29.39%, average ToE improvement ratio of 415.92 and an average
improvement of 95% iterations. Moreover, evaluations using Jackknife Estimation showed stable and
reliable results from several experiment runs of the non-deterministic strategy. The non-deterministic
approach in selecting hyperparameter showed a significant acc and better computer resources (i.e. cpu and
memory time) utilization. This approach can be adopted widely in hyperparameter tuning, and in
conserving utilization of computer resources i.e. green computing.

Keywords
(separated by '-')

Machine Learning - Random Forest - Hyperparameter tuning - Number of trees



Confidence in Random Forest
for Performance Optimization

Kennedy Senagi1,2(B) and Nicolas Jouandeau2

1 Department of Information Technology, Dedan Kimathi University
of Technology, Nyeri, Kenya
kennedy.senagi@dkut.ac.ke

2 LIASD, University of Paris8, Saint-Denis, France
n@ai.univ-paris8.fr

AQ1
AQ2

Abstract. In this paper, we present a non-deterministic strategy for
searching for optimal number of trees (NoTs) hyperparameter in Ran-
dom Forest (RF). Hyperparameter tuning in Machine Learning (ML)
algorithms optimizes predictability of an ML algorithm and/or improves
computer resources utilization. However, hyperparameter tuning is a
complex optimization task and time consuming. We set up experi-
ments with the goal of maximizing predictability, minimizing NoTs
and minimizing time of execution (ToE). Compared to the determin-
istic algorithm, e-greedy and default configured RF, this research’s non-
deterministic algorithm recorded an average percentage accuracy (acc) of
approximately 98%, NoTs percentage average improvement of 29.39%,
average ToE improvement ratio of 415.92 and an average improvement
of 95% iterations. Moreover, evaluations using Jackknife Estimation
showed stable and reliable results from several experiment runs of the
non-deterministic strategy. The non-deterministic approach in selecting
hyperparameter showed a significant acc and better computer resources
(i.e. cpu and memory time) utilization. This approach can be adopted
widely in hyperparameter tuning, and in conserving utilization of com-
puter resources i.e. green computing.

Keywords: Machine Learning · Random Forest
Hyperparameter tuning · Number of trees

1 Introduction

RF was first introduced by Breiman [2]. It is an ensemble classifier that builds
many decision trees from the same dataset using bootstrapping and randomly
sampled variables. Predictions at the leaves are combined to form a single pre-
diction; for each tree. When performing classifications, the input query instances
traverse each tree, which casts its vote for a class. RF considers the class with the
most votes as the answer to a classification query [2]. The inception of RF has
led to development of many RF libraries and diverse usage of RF on a variety

c© Springer Nature Switzerland AG 2018
M. Bramer and M. Petridis (Eds.): SGAI-AI 2018, LNAI 11311, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-030-04191-5_31

A
u

th
o

r 
P

ro
o

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04191-5_31&domain=pdf
https://doi.org/10.1007/978-3-030-04191-5_31


2 K. Senagi and N. Jouandeau

of datasets. RF has been implemented in several software libraries: scikit-learn,
SPRINT and Random Jungle. It has been studies and applied in diverse domain
[11,12,15].

RF is a supervised ML algorithm that requires tuning to improve predictabil-
ity, speed and utilization of computer resources. Tuning RF involves adjusting
hyperprameters. Hyperparameters can be set by default or configured manually.
In default settings, the ML algorithm sets hyperprameter values while manu-
ally setting requires users to set specific values. Hyperparameters specify inter-
operability of the underlying model. When adopting ML algorithm to specific
datasets, hyperparameter tuning can be cumbersome and time consuming [6,14].

Default hyperprameter values do not give better results compared to tuned
RF. Many theories have been put forward to optimize hyperparameter RF
including grid search and Bayesian optimization [14]. Some researchers focus
on optimizing specific hyperprameters [1,10,11]. For instance, Bernard et al. [1]
discusses ways of selecting the number of features to consider in node splitting
and Liu et al. [10] derived a nonparametric algorithm to estimate the categorical
distributions of the internal nodes. NoTs has been studied too [11].

This research focused on maximizing acc while minimizing NoTs and ToE
in RF. We did experiments on different datasets and saw that most datasets had
maximum acc and minimum ToE between 2 to 512 NoTs, the fertile region. We
formulated a non-deterministic algorithm that maximized acc while minimizing
NoTs and ToE in the fertile region. Moreover, we did further experiments using
grid search, e-greedy algorithms, and compared results.

In this paper, Sect. 2 covers related works, Sect. 3 discusses experiments,
results and analysis and Sect. 4 concludes the paper.

2 Related Works

Tuning ML systems can be time consuming and at times inaccurate and difficult.
To solve this, a hyperparameter optimization strategy is proposed inspired by
analysis of boolean function focusing on high-dimension datasets. The algorithm
recorded at least an order of magnitude of speedup than Hyperband and Bayesian
Optimization and outperform Random Search 8x [7].

Sensitive was more on NoTs but less sensitive to the number of features in
node split. MapReduce could made parameter optimization feasible on a massive
scale [6]. RF grows trees rapidly and setting up a large NoTs (e.g. 1000) is okay.
If there are many variables, trees can grow more (up-to 5000) [3]. acc increased
when NoTs in RF was doubled. However, there was a threshold beyond which
there was no significance gain in acc [11].

A full Bayesian treatment expected improvement parameter tuning, and algo-
rithms (e.g. ANN) for dealing with variable time regimes and running experi-
ments in parallel. Results of this experiment surpassed a human expert at select-
ing hyper-parameters on the competitive CIFAR-10 dataset; beating the state
of the art by over 3%. SVM was used as a case study algorithm [14].

XGBoost algorithm proposed candidate splitting points according to per-
centiles of feature distribution, then maps the continuous features into buckets

A
u

th
o

r 
P

ro
o

f



Confidence in Random Forest for Performance Optimization 3

split, aggregates the statistics and finds the best solution among proposals based
on the aggregated statistics [4].

Optimizing parameters of evolutionary algorithm values is a challenging
activity. CMA-ES tuning algorithms gave better results in terms of utility. Tun-
ing parameters of evolutionary algorithms does pay off in terms of performance,
better other intuitions and usual parameter setting conventions [13].

A selection of supplemental training datasets was used in fine-tuning a high-
performing ANN model. Natural Language Processing system ability is improved
after being evaluated by Item Response [9].

3 Experiments, Results and Analysis

In this research, we considered 20 standardized datasets collected from UCI
Machine Learning [5] and Kaggle [8] website, namely: Balance Scale (1), Breast
Cancer Wisconsin - Original (2), Car Evaluation (3), Habermans Survival (4),
Pen-Based Recognition of Handwritten Digits (5), Website Phishing (6), Yeast
(7), Banknote Authentication (8), Contraceptive Method Choice (9), Diabetic
Retinopathy Debrecen (10), EEG Eye State (11), Pima Indians Diabetes (12),
Wine Quality - White (13), Wine Quality (14), Breast Cancer Wisconsin (Orig-
inal) (15), Dota (16) Handwriting Verification Test (17), Ionosphere (18), Plant
Leaf Classification (19) and Seeds (20). All experiments were run 20 times and
results averaged. NoTs (θ) was varied, as we measured accuracy (acc) and time
of execution (t). Computer was: Intel(R) Xeon(R) CPU E5-4610 0 @ 2.40 GHz.

3.1 Considering 2 to 4096 Number of Trees

The parameter space was composed of a finite set of sorted even NoTs; 2 to 4096.
RF predictability was evaluated by acc defined in Eq. 1; where n are samples,
ŷi is the predicted label and yi is the original label. The results of acc and t are
tabulated in Tables 1 and 2 respectively.

acc(y, ŷ) =
1
n

n−1∑

i=0

1(ŷi = yi) (1)

Table 1 shows acc increasing steadily with an increase in NoTs, then flattens.
RF classification employs bagging principles, where a committee of trees, cast a
vote for the predicted class. However, RF classifier introduces modifications in
bagging where it builds a large collection of de-correlated trees, and then aver-
ages them. When the NoTs become huge, we see RF acc varying insignificantly
meaning the average acc of de-correlated trees vary insignificantly. Therefore,
increasing the NoTs increases acc, but there is a threshold where, increasing
NoTs does not contribute to a significantly positive acc. Maximum acc values
are bolden in Table 1. Besides the 6th dataset having its average maximum acc
at 2048 NoTs, the other datasets had their average accuracies between 2 and

A
u

th
o

r 
P

ro
o

f



4 K. Senagi and N. Jouandeau

Table 1. Accuracy (percentage) of RF with θ trees for 20 datasets (DS)

DS Number of trees

2 4 8 16 32 64 128 256 512 1024 2048 4096

1 80.3 81.9 83.0 82.4 84.6 85.6 84.6 84.0 84.0 84.0 84.6 84.6

2 91.7 93.7 97.1 98.0 97.6 97.6 97.6 97.1 97.1 97.1 97.1 97.1

3 86.3 85.5 83.6 83.8 84.8 84.4 84.6 84.4 84.8 84.8 84.6 84.6

4 76.1 79.3 75.0 76.1 79.3 79.3 78.3 78.3 78.3 79.3 78.3 79.3

5 92.5 96.8 98.3 98.6 98.4 98.9 99.0 99.1 99.0 99.1 99.1 99.1

6 81.5 86.9 86.2 87.4 85.7 87.4 87.9 88.4 87.7 87.9 88.7 88.2

7 48.6 47.8 52.9 57.3 56.5 59.5 59.8 58.8 58.8 58.5 58.5 58.8

8 96.6 97.8 97.6 97.6 97.3 97.6 97.8 97.8 98.1 97.8 97.8 97.8

9 46.4 48.4 49.1 51.6 49.5 49.8 51.1 49.5 50.7 51.4 50.9 51.1

10 61.3 64.7 65.3 65.0 69.9 66.5 67.6 67.9 68.2 67.1 67.9 67.3

11 77.9 84.2 87.9 89.3 91.3 92.7 92.0 92.2 92.2 92.1 92.3 92.2

12 66.7 71.0 74.9 74.5 76.6 76.6 76.6 75.8 77.5 76.6 77.1 77.1

13 54.9 59.4 64.7 64.6 65.7 65.9 67.1 67.3 67.1 66.6 67.3 67.4

14 54.4 69.7 63.3 67.3 69.2 69.2 69.6 70.2 69.8 69.2 69.8 69.8

15 96.5 96.6 97.0 97.2 97.2 97.2 97.2 97.2 97.2 97.2 97.2 97.2

16 73.6 77.1 79.9 83.8 84.9 86.0 86.6 86.8 86.2 87.1 87.5 87.1

17 84.9 88.7 91.5 89.6 91.5 92.5 92.5 91.5 92.5 92.5 92.5 92.5

18 74.9 70.1 75.8 77.5 76.2 76.2 75.8 76.6 77.5 77.5 77.5 76.6

19 92.5 93.2 93.2 93.8 93.8 93.7 93.6 94.1 93.8 94.1 94.1 94.1

20 82.5 90.5 87.3 84.1 87.3 85.7 87.3 87.3 87.3 87.3 87.3 87.3

512 trees. These variations could have been caused by the randomness of RF.
This research identified the range of 2 to 512 NoTs to be the fertile region.

Table 2 shows ToE increasing steadily with an increase in NoTs. This tells
us that building more NoTs in RF demand more computing resources. We also
observed a relative significant change in ToE; the threshold values are in bold.

Furthermore, this research notes that, different datasets gave different values
of acc and ToE with the different NoTs. This is could be as a result of differ-
ent dataset having different complexities (i.e. features, number of records and
classes) and the random nature of RF. Therefore, it is important we maximize
acc and minimize ToE (i.e. minimize computer resources utilized) in the fertile
region.

3.2 Considering 2 to 512 Number of Trees

In Sect. 3.1, we defined the fertile region where we observed a lower ToE and
maximum accuracies. In this region, we can avoid searching in regions (>512)

A
u

th
o

r 
P

ro
o

f



Confidence in Random Forest for Performance Optimization 5

Table 2. Time of execution (sec) of RF with θ trees for 20 datasets (DS)

DS Number of trees

2 4 8 16 32 64 128 256 512 1024 2048 4096

1 0.21 0.21 0.22 0.23 0.25 0.30 0.51 0.90 1.60 3.29 6.49 12.45

2 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.59 3.09 5.98 12.35

3 0.21 0.21 0.22 0.23 0.25 0.30 0.50 1.00 1.80 3.39 6.79 13.57

4 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.80 1.60 3.30 5.99 12.06

5 0.21 0.21 0.22 0.23 0.26 0.41 0.60 1.10 2.20 4.01 8.23 15.87

6 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.89 1.89 3.46 6.42 13.14

7 0.21 0.21 0.22 0.23 0.26 0.30 0.50 1.00 1.88 3.71 7.13 14.06

8 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.69 3.17 6.64 12.76

9 0.21 0.21 0.22 0.23 0.25 0.30 0.50 1.00 1.89 3.47 6.95 13.70

10 0.21 0.21 0.22 0.23 0.25 0.30 0.50 0.90 1.79 3.47 6.93 14.41

11 0.21 0.21 0.22 0.33 0.46 0.71 1.20 2.40 4.70 9.18 18.27 36.62

12 0.21 0.21 0.22 0.24 0.25 0.30 0.50 0.79 1.68 3.46 6.43 12.64

13 0.21 0.21 0.22 0.23 0.25 0.51 0.70 1.40 2.69 5.28 10.45 21.20

14 0.21 0.21 0.22 0.23 0.25 0.40 0.60 1.10 2.09 3.76 7.33 14.96

15 0.26 0.32 0.26 0.31 0.50 0.62 1.19 1.93 3.73 6.74 14.13 27.27

16 0.26 0.28 0.29 0.31 0.47 0.77 1.03 1.94 3.11 6.54 12.95 26.09

17 0.26 0.29 0.29 0.31 0.37 0.57 0.95 1.71 2.94 5.07 10.21 19.48

18 0.24 0.26 0.29 0.34 0.35 0.62 0.90 1.60 2.60 5.31 10.51 19.33

19 0.25 0.26 0.29 0.33 0.31 0.71 0.89 1.50 3.00 5.49 10.43 20.885

20 0.26 0.26 0.29 0.37 0.37 0.55 1.13 1.78 3.033 5.59 11.128 20.389

Fig. 1. Number of trees against datasets of accuracy in RF for 20 datasets

A
u

th
o

r 
P

ro
o

f



6 K. Senagi and N. Jouandeau

Fig. 2. Number of trees against datasets of time of execution in RF for 20 datasets

that showed higher ToE and significant flattening of acc. Within the fertile region
parameter space, we defined a finite set of sorted even NoTs, θ. We configured,
trained and tested RF with the respective θ and recorded acc and t; results are
shown in Figs. 1 and 2.

Figure 1 shows a box plot of accuracy distribution for NoTs against datasets
across 20 datasets in the fertile region. Some datasets had a low inter-quartile
range, low difference between the low and maximum points and more outliers
below the lower whiskers. Some box plots also recorded some outliers above the
upper whisker. A low difference in quartile ranges means there was a low variation
in acc from the median. However, the outliers inform us that, some accuracies
values were very far away from the median. Nonetheless, we see different acc
distribution on different datasets. We therefore need to have a strategy that will
dynamically search the best acc.

Figure 2 is a box plot of ToEs distribution for NoTs against datasets across
20 datasets in the fertile region. We observed the lower whisker having almost
the same ToE; there could be some NoTs that give almost the same minimum
ToE. In most datasets, the lower whiskers being shorter than the upper whiskers.
A shorter lower whisker means lower ToE were closer to the median.

From the above, we formulated: deterministic, non-deterministic, e-greedy
and default configured RF (having 8 NoTs) algorithmic approaches to search
an minimum NoTs hyperparameter that maximized acc.

(a) Deterministic Hyperparameter Search

The deterministic search algorithm is outlined in Algorithm1. This algorithm’s
goal was to maximize acc. Note that, ∃accmax ∈ acc. The deterministic algorithm
is greedy and exhaustive (linear search) and returns accmax, with its correspond-
ing NoT (θbest) and ToE (t). Results are in Tables 4, 5 and 6.

A
u

th
o

r 
P

ro
o

f



Confidence in Random Forest for Performance Optimization 7

Algorithm 1. The Deterministic Hyperparameter Search
1: procedure DeterministicSearch(train, test)
2: ti ← CurrentTime()
3: T ← [θ1, θ2, θ3, . . . , θn]
4: accmax ← 0
5: for each θ in T do
6: rf ← RandomForest(θ, train)
7: accnew ← Accuracy(rf, test)
8: if accnew > accmax then
9: (accmax, θbest)← (accnew, θ)

10: time spent← CurrentTime()− ti
11: return (accmax, θbest, time spent)

Table 3. Percentage of samples and average standard deviation across 20 datasets

DS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Percentage 90 80 30 10 20 30 40 20 50 50 10 10 20 20 10 30 30

Average STD × 10−4 1.1 0 1.1 3.9 0.5 1.1 1.4 0.5 0 1 1 3.9 2.6 1.2 0.5 2.4 1.1

Modal percentage 10

(b) The Non-deterministic Hyperparameter Search Algorithm

This research was interested in maximizing acc and minimizing NoTs. Tables 1
and 2 shows different acc with different ToEs. Table 2 shows more NoTs require
more ToE (i.e. memory and cpu time). With this observation, we ought to
maximize acc and minimize NoTs to conserve computing resources i.e. green
computing. This research therefore formulated a non-deterministic approach to
converge close/to maximum acc and minimum NoTs. The algorithm is outlined
in Algorithm 2, where θi = random(∈ T ), ψ1 = 1 + lim

100 , and ψ2 = 1− lim
100 .

Experiment results of the non-deterministic algorithm are in Table 3. We see
a significantly low average standard deviation across the percentage samples.
This means there was a small variation in acc across the percentage samples.
We considered 10% sample because it requires lesser CPU resources in generating
randomNoTs, using the function, Generate( ) . FewerNoTsmeans lower ToE.

The goal of the non-deterministic algorithm was to maximize acc and mini-
mize t through randomization. In this algorithm we assumption that, ∃accbest ∈
acc has θbest. Note that the function Generate( ) returns 10% of elements in
the parameter space and elements are sampled without replacement. We iterate
through the random selected NoTs as we configure RF. We considered percent-
age upper bound and lower bound of the accbest. If accrand falls in the upper
boundary, then accbest ← accrand, θbest ← θrand and we break, with the assump-
tion that we do not anticipate further percentage Δ accbest. If accrand falls in the
lower boundary and θrand is less than θbest, then accbest ← accrand, θbest ← θrand

and we also break, with the assumption that we have an insignificant Δ accbest

and we have a better tbest. Moreover, if accrand falls above the upper bound-
ary, then accbest ← accrand, θbest ← θrand, and we continue looping with the

A
u

th
o

r 
P

ro
o

f



8 K. Senagi and N. Jouandeau

Algorithm 2. The Non Deterministic Hyperparameter Search
1: vals = []
2: procedure Generate()
3: while Len(vals) ≤ 26 do
4: val = 2 + rand()%512
5: if val is not in vals then
6: add val in vals
7: return val
8: procedure NonDeterministicSearch(train, test)
9: ti ← CurrentTime()

10: accrand, θrand, accbest, θbest, count← 0
11: T ← Generate( )
12: for each θrand in T do
13: rf ← RandomForest(θrand, train)
14: accrand ← Accuracy(rf, test)
15: if count == 0 then
16: (accbest, θbest)← (accrand, θrand)

17: if ψ1.accbest > accrand > ψ2.accbest then
18: if accrand < accbest then
19: if θrand < θbest then
20: (accbest, θbest)← (accrand, θrand)
21: break
22: else
23: (accbest, θbest)← (accrand, θrand)
24: break
25: else if accrand > ψ1.accbest then
26: (accbest, θbest, count)← (accrand, θrand, 0)

27: count← count+ 1
28: if count >= 10 then break

29: time spent← CurrentTime()− ti
30: return (accbest, θbest, time spent)

assumption that we anticipate further percentage Δ accbest. Lastly, we break
when iteration counts are 10% of the parameter space. Finally, we set the per-
centage boundary as 1% to increase the algorithm’s acc. A larger percentage
boundary will reduce the algorithm’s acc. Results are in Tables 4, 5 and 6.

(c) RF configured with Default Parameters

RF took 8 number of trees by default as the NoT.

(d) The e-greedy Algorithm

A multi-bandit strategy is a mathematical model used to reason about how to
make a decision when we have many actions to take and imperfect information
about the rewards you would receive after taking these actions. Multi-armed
bandit problem use the analogy of considering arms (options) to select in order

A
u

th
o

r 
P

ro
o

f



Confidence in Random Forest for Performance Optimization 9

to maximize a reward. e-greedy is an example of a multi-bandit algorithm. e-
greedy uses the concept of exploiting and exploring. This algorithm is greedy in
the sense that it exploits the best action at that time. However, the exploiting
is regulated by the epsilon value that allows it to explore (trying out other
options). We calculate the probability that an event will occur and match it
with the epsilon value ε, set to 0.1, this guides us on when to exploit or explore.
Exploiting considers the rewards for each arm/option and picks the arm with
the highest reward, while exploring randomly chooses any arm. The arm/option
that was either exploited or explored accumulates an reward [16]. This research
looked at the problem of minimizing NoT using multi-armed bandit problem,
whereby a user anticipates to chose an NoT that maximizes acc (exploiting) and
can also considering other possible NoTs could maximize acc (exploring). We
initialize a counter and rewards arrays with lengths equivalent to NoTs length.
The chosen NoT increase it’s count value, in it’s index in the counter array c.
Cumulative occurrences is got by summing up the counter array, C. These values
are used in calculating the probability of an event will occur p, where p = c/C. If
p is less than ε we choose to exploit, otherwise we explore. In exploring, we choose
a random NoT from the other NoTs. After either exploiting or exploring, each
NoT reward (in this case acc) is averaged in it’s element index in the rewards
array. This rewards array was used in considering future arms to exploit. We
set-up experiments with 500 iterations.

3.3 Performance Comparisons: Number of Trees, Accuracy and
Time of Execution

Table 4 contains results and analysis of minimum NoTs, selected by determin-
istic and non-deterministic hyperparameter search algorithms. The table also
has average probabilities for e-greedy predicting θbest. We observe a consider-
ably good percentage improvement of NoTs in the non-deterministic algorithm.
At some instances, for example, in datasets 8 and 13, the non-deterministic
algorithm was able to perfectly converged to the minimum NoTs with 26 and
2 iterations respectively. Moreover, as observed in Table 4, about 65% of the
datasets used less than 50% (i.e. less than 5% of random values in the search
space) of random values while iterating, to converge close/to maximum acc and
minimum NoTs. Generally, the percentage NoTs improvement was 29.39% and
the average number of iterations used were 11.8. We have average probabilities
of e-greedy selecting the correct θbest for each dataset. We were not able to get
a good visualization of e-greedy learning performance (in terms of probabilities)
across 500 iterations for the 20 datasets. However, we averaged the probabilities
and we see e-greedy had an average 0.83 i.e. e-greedy can select θbest quite well.

Table 5 shows accuracy recorded from running deterministic, non-
deterministic and default configured RF. The default configured RF had a mean
percentage difference of −4.9 while the non-deterministic and e-greedy algo-
rithms had the same and considerably better percentage change of −1.81. In
non-deterministic algorithm, datasets 2, 8 and 13 recorded a zero percentage
change in acc.

A
u

th
o

r 
P

ro
o

f



10 K. Senagi and N. Jouandeau

Table 4. Recorded minimum number of trees (θbest) and iterations for deterministic
and non-deterministic algorithms, and e-greedy average probability of predicting θbest

DS Deterministic Non-deterministic e-greedy

θbest θbest θ % improvement Iteration Avg probability of selecting θbest

1 26 32 −23.08 5 0.821

2 46 48 −4.35 26 0.703

3 116 46 60.34 26 0.958

4 70 18 74.29 26 0.949

5 48 16 66.67 26 0.821

6 216 26 87.96 26 0.774

7 118 34 71.19 3 0.819

8 44 44 0 26 0.778

9 48 42 12.5 2 0.825

10 18 10 44.44 4 0.821

11 196 50 74.49 26 0.723

12 164 10 93.9 2 0.822

13 46 46 0 2 0.82

14 150 50 66.67 3 0.813

15 32 32 −1.133 11 0.808

16 500 46 −30.250 2 0.785

17 138 20 −7.118 3 0.761

18 26 26 −0.444 3 0.78

19 2 2 0.895 11 0.913

20 4 10 0.800 2 0.787

μ 100 30.40 29.39 11.8 0.814

Table 6 has results and analysis of time of execution of deterministic, non-
deterministic, e-greedy algorithms and default configured RF. The ratio of
deterministic: non-deterministic algorithms, deterministic:e-greedy, determin-
istic: default configured RF are calculated. Their averages are also calcu-
lated. Default-configured RF records a very high average ratio of 6223. Non-
deterministic and e-greedy algorithms record relatively high ratios of 415 and 110
respectively. As discussed in this section, the deterministic algorithm is exhaus-
tive and selects the minimum NoTs that had the maximum acc. With these
results, we benchmark the non-deterministic algorithm, e-greedy and default
configured RF. The non-deterministic algorithm uses the principle of random-
ization, heuristics and terminating policies as outlined in Algorithm2. With this
strategy, the non-deterministic algorithm recorded ≈97% average acc, and could
run at an average of 415.92 faster, on an average of 11.8 iterations. Using the
strategy formulated in Algorithm2, the non-deterministic algorithm recorded
100% acc at three instances, and recorded zero NoTs percentage improvement
on two instances. Moreover, in the non-deterministic algorithm, we recorded
NoTs that are below the NoTs threshold (64 trees), that showed a significant

A
u

th
o

r 
P

ro
o

f



Confidence in Random Forest for Performance Optimization 11

Table 5. Maximum accuracy (accbest) for deterministic, default configured RF and
non-deterministic, and average acc for e-greedy recorded across 20 datasets (DS)

DS Deterministic Default configured RF Non-deterministic e-greedy

accmax accbest % Δ accbest % Δ Avg acc % Δ

1 0.862 0.819 −4.99 0.856 −0.70 0.847 −1.74

2 0.976 0.971 −0.51 0.976 0.00 0.971 −0.51

3 0.85 0.846 −0.47 0.846 −0.47 0.849 −0.12

4 0.815 0.761 −6.63 0.804 −1.35 0.8 −1.84

5 0.993 0.973 −2.01 0.99 −0.30 0.988 −0.50

6 0.897 0.855 −4.68 0.887 −1.11 0.883 −1.56

7 0.601 0.552 −8.15 0.593 −1.33 0.588 −2.16

8 0.985 0.976 −0.91 0.985 0.00 0.98 −0.51

9 0.538 0.48 −10.78 0.505 −6.13 0.514 −4.46

10 0.711 0.627 −11.81 0.682 −4.08 0.685 −3.66

11 0.925 0.89 −3.78 0.919 −0.65 0.91 −1.62

12 0.797 0.74 −7.15 0.736 −7.65 0.775 −2.76

13 0.681 0.636 −6.61 0.681 0.00 0.669 −1.76

14 0.71 0.654 −7.89 0.679 −4.37 0.692 −2.54

15 0.973 0.97 −0.31 0.973 0.00 0.972 −0.10

16 0.88 0.826 −6.14 0.863 −1.93 0.863 −1.93

17 0.942 0.909 −3.50 0.933 −0.96 0.925 −1.80

18 0.797 0.735 −7.78 0.771 −3.26 0.773 −3.01

19 0.942 0.936 −0.64 0.94 −0.21 0.94 −0.21

20 0.919 0.883 −3.92 0.903 −1.74 0.887 −3.48

μ 0.840 0.802 −4.933 0.826 −1.812 0.826 −1.814

change in ToEs, as discussed in Sect. 3.1. This means the formulated strategy
worked quite well. Considering dataset 2, we note that 0% percentage acc change,
was got with more NoTs (48 trees instead of 46 trees) but at 34.76 times faster.
These shows 100% accuracies got, at more number trees but takes a shorter
searching time. This makes the strategy formulated in this research relevant.
Despite the 1% boundary policy and breaking policies strategies, 65% of the
datasets recorded less than 1% change in percentage acc. The other 35% scored
fairly good results too. Generally, a shorter ToE means the process will take a
shorter time in memory and shorter cpu time, when tuning RF. We also observed
the non-deterministic algorithm run an average of 4.6% iterations (i.e. 11.8 of
256 iterations in the parameter space). This is an improvement in iterations
by 95.3%. Therefore, the non-deterministic algorithm can improve utilization of
computing resources while maintaining a significant acc.

A
u

th
o

r 
P

ro
o

f



12 K. Senagi and N. Jouandeau

Table 6. Average time of execution (sec) recorded across 20 datasets (DS)

DS Deterministic Default configured RF Non-deterministic e-greedy

i (sec) t (sec) Ratio t (sec) Ratio t (sec) Ratio

1 224.11 0.03 7470 1.22 183.7 2.16 103.75

2 217.97 0.02 10899 6.27 34.76 7.16 100.91

3 239.22 0.03 7974 6.45 37.09 7.28 104.92

4 216.26 0.02 10813 6.43 33.63 7.16 100.12

5 282.42 0.07 4035 6.38 44.27 7.59 118.17

6 235.94 0.03 7865 6.25 37.75 7.96 104.4

7 249.68 0.04 6242 0.78 320.1 1.33 107.16

8 230.44 0.03 7681 6.34 36.35 7.9 104.75

9 246.37 0.03 8212 0.51 483.08 2.32 106.19

10 246.37 0.04 6159 0.94 262.1 2.26 109.01

11 622.88 0.29 2148 1.02 610.67 2.76 225.68

12 227.91 0.03 7597 0.46 495.46 2.25 101.29

13 360.73 0.11 3279 0.59 611.41 2.46 146.64

14 260.52 0.05 5210 0.77 338.34 2.31 112.78

15 230.42 0.15 1536 0.26 886.23 2.37 97.22

16 218.4 0.13 1680 0.29 753.1 2.26 96.64

17 195.28 0.03 6509 0.25 781.12 2.16 90.41

18 213.35 0.03 7112 0.28 761.96 2.25 94.82

19 227.81 0.04 5695 0.28 813.61 2.3 99.05

20 190.49 0.03 6350 0.24 793.71 2.16 88.19

μ 256.83 0.06 6223.3 2.30 415.92 3.82 110.61

As explained in this section, e-greedy algorithm heavily relies on the idea
that, the probability of the chosen NoT should be less than the ε value, for
it to exploit that (selected) arm. Otherwise, the algorithm explores (randomly
selects other arms). Across the 20 datasets, on average, the probability that e-
greedy will select the optimal arm is 0.814, as shown in Table 4. At some point,
because of the exploring and exploiting ideas, e-greedy misses to select the best
arms, that’s why Table 5 shows e-greedy having a average acc score of 0.826.
Nevertheless, in the same table, considering the deterministic algorithm selected
the best acc value, e-greedy falls short of an averagely of −1.8% from the best
score, and runs 110.61 faster than the deterministic algorithm. Comparing e-
greedy and the non-deterministic, coincidentally, we see both of them having the
same accuracy across the 20 datasets. However, the non-deterministic algorithm
runs 415 times faster compared to the deterministic approach while e-greedy
that run at 110 times faster than the deterministic approach. Generally we see
the non-deterministic algorithm performing better than the e-greedy algorithm.

A
u

th
o

r 
P

ro
o

f



Confidence in Random Forest for Performance Optimization 13

The RF algorithm configured by default NoTs (8 trees) showed good results
too. It recorded ≈94.5% average accuracy change and very good ToE ratio of
6223. Table 2 told us that fewer NoTs give lesser times of execution. Com-
paring these results with the non-deterministic algorithm, Table 6 has a higher
ToEs because of the higher number of iterations (average of 30.40 across the
20 datasets). If we benchmark our results with the deterministic algorithm, RF
algorithm configured by default NoTs runs 6223 faster and give 94.5% chances
to get the average best acc, on average. While the non-deterministic approach
runs 415 faster and give 98.19% chances to get the average best acc, on average.

3.4 Evaluation Using Jackknife Estimation

Jackknife is used to evaluate the quality of the prediction of computational
models. It uses resampling to calculate standard deviation error and estimate
bias of a sample statistic, as shown in Eqs. 2 and 3 [15]. Table 7 shows Jack-
knife results across the 20 datasets. Different datasets record different values of
Bias-Corrected Jackknifed Estimates. Standard error is used for null hypothesis
testing and for computing confidence intervals. This is why confidence inter-
vals deviating insignificantly. We also see the bias-corrected Jackknifed estimate

Table 7. Jackknife estimates for deterministic and non-deterministic algorithms

DS Bias-corrected jackknifed estimate Confidence interval

Deterministic Non-deterministic e-greedy

Deterministic Non-deterministic e-greedy Lower Upper Lower Upper Lower Upper

1 0.86 0.85 0.84 0.86 0.87 0.85 0.85 0.84 0.85

2 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.97 0.97

3 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

4 0.82 0.79 0.8 0.82 0.82 0.79 0.80 0.79 0.8

5 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

6 0.89 0.88 0.88 0.89 0.89 0.88 0.89 0.88 0.88

7 0.61 0.59 0.59 0.60 0.61 0.59 0.59 0.59 0.59

8 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.98

9 0.53 0.52 0.51 0.53 0.53 0.51 0.52 0.51 0.51

10 0.71 0.69 0.68 0.71 0.71 0.69 0.69 0.68 0.69

11 0.93 0.91 0.91 0.93 0.93 0.91 0.92 0.9 0.92

12 0.80 0.77 0.77 0.79 0.80 0.77 0.78 0.77 0.78

13 0.68 0.67 0.66 0.68 0.68 0.66 0.67 0.66 0.67

14 0.71 0.69 0.69 0.71 0.71 0.68 0.69 0.68 0.69

15 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

16 0.86 0.88 0.86 0.86 0.87 0.88 0.88 0.85 0.87

17 0.93 0.94 0.92 0.93 0.94 0.94 0.95 0.92 0.93

18 0.77 0.80 0.77 0.76 0.78 0.79 0.80 0.77 0.78

19 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

20 0.90 0.92 0.88 0.89 0.91 0.91 0.93 0.88 0.89

µ 0.84 0.83 0.82 0.83 0.84 0.83 0.83 0.82 0.83

A
u

th
o

r 
P

ro
o

f



14 K. Senagi and N. Jouandeau

deviating minimally because the standard error were zero across all the records.
In the bias-corrected jackknifed estimate column, the non-deterministic algo-
rithm records 0.83 compared to the e-greedy that recorded 0.82. Generally, the
non-deterministic algorithm predictions are stable and reliable.

V ar(θ) =
n− 1
n

n∑

i=1

(θ̄i − θ̄jack)2, θ̄jack =
1
n

n∑

i=1

(θ̄i) (2)

θ̄BiasCorrected = Nθ̄ − (N − 1)θ̄jack (3)

4 Conclusion

Hyperparameter tuning is a complex optimization task and time consuming. In
this research, we formulated a non-deterministic strategy in searching an opti-
mal NoTs hyperparameter in RF algorithm. The goal of this strategy was to
maximize predictability, minimizing NoTs and minimizing ToEs. We compared
experiment results with the deterministic algorithm, e-greedy and default con-
figured RF. The non-deterministic strategy recorded significantly good results
in maximizing acc, minimizing NoTs and minimizing searching time. Moreover,
evaluations using Jackknife Estimation show that its predictions are stable. The
non-deterministic strategy had a significant acc levels and better utilization of
cpu processing and time in memory. This research can be adopted in algorithms
hyperparameter search and in green computing to preserve computing resources.

References

1. Bernard, S., Heutte, L., Adam, S.: Influence of hyperparameters on random forest
accuracy. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS,
vol. 5519, pp. 171–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02326-2 18

2. Breiman, L.: Random forests. J. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

3. Breiman, L., Cutler, A.: Random forests manual v4.0 (2017). https://www.stat.
berkeley.edu/∼breiman/Using random forests v4.0.pdf

4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794. ACM (2016). https://doi.org/10.1145/2939672.2939785

5. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

6. Ganjisaffar, Y., Debeauvais, T., Javanmardi, S., Caruana, R., Lopes, C.V.: Dis-
tributed tuning of machine learning algorithms using MapReduce clusters. In: 3rd
Workshop on Large Scale Data Mining: Theory and Applications. ACM (2011).
https://doi.org/10.1145/2002945.2002947

7. Hazan, E., Klivans, A., Yuan, Y.: Hyperparameter optimization: a spectral app-
roach. arXiv preprint arXiv:1706.00764 (2017)

8. Kaggle: Kaggle datasets. https://www.kaggle.com/datasets

A
u

th
o

r 
P

ro
o

f

https://doi.org/10.1007/978-3-642-02326-2_18
https://doi.org/10.1007/978-3-642-02326-2_18
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
https://doi.org/10.1145/2939672.2939785
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/2002945.2002947
http://arxiv.org/abs/1706.00764
https://www.kaggle.com/datasets


Confidence in Random Forest for Performance Optimization 15

9. Lalor, J., Wu, H., Yu, H.: Improving machine learning ability with fine-tuning
(2017)

10. Liu, X., et al.: Semi-supervised node splitting for random forest construction.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 492–499
(2013). https://doi.org/10.1109/CVPR.2013.70

11. Oshiro, T.M., Perez, P.S., Baranauskas, J.A.: How many trees in a random forest?
In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 154–168. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31537-4 13

12. Senagi, K., Jouandeau, N., Kamoni, P.: Using parallel random forest classifier in
predicting land suitability for crop production. J. Agric. Inform. 8(3), 23–32 (2017).
https://doi.org/10.17700/jai.2017.8.3.390

13. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary
algorithms. In: IEEE Congress on Evolutionary Computation, pp. 399–406. IEEE
(2009). https://doi.org/10.1109/CEC.2009.4982974

14. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems, pp.
2951–2959 (2012)

15. Wager, S., Hastie, T., Efron, B.: Confidence intervals for random forests: the jack-
knife and the infinitesimal jackknife. J. Mach. Learn. Res. 15(1), 1625–1651 (2014)

16. White, J.: Bandit Algorithms for Website Optimization. O’Reilly Media, Inc., Farn-
ham (2013)

A
u

th
o

r 
P

ro
o

f

https://doi.org/10.1109/CVPR.2013.70
https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/10.17700/jai.2017.8.3.390
https://doi.org/10.1109/CEC.2009.4982974


Author Queries

Chapter 31

Query
Refs.

Details Required Author’s
response

AQ1 This is to inform you that corresponding author has been
identified as per the information available in the Copy-
right form.

AQ2 Per Springer style, both city and country names must be
present in the affiliations. Accordingly, we have inserted
the city names “Nyeri” and “Saint-Denis” in affiliations
“1” and “2”. Please check and confirm if the inserted
city names are correct. If not, please provide us with the
correct city names.

A
u

th
o

r 
P

ro
o

f


