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Abstract—In this paper a Search strategy based on Lévy Walk
is proposed. Lévy Walk increases the diversity of solutions, and
constitutes good strategies to move away from local to global
search. The amount of exploration and exploitation and the
fine balance between them determine the efficiency of search
algorithm. The highly diffusive behavior of the original Lévy
Walk algorithm results in more global search. Thus, in the
proposed algorithm, the time spent in local search is increased
according to the fluctuation of the searched region. Moreover, a
case study on destructive foraging is presented in this paper, with
the aim to apply it to several swarm robotics problems. In order
to present simulations in a finite two dimensional landscape with
a limited number of clustered and scattered targets, the ArGOS
simulator has been used.

I. INTRODUCTION

Swarm robotics tasks such as search and rescue [1], space
exploration [2], foraging [3] [4] and surveillance [5], are based
on efficient search [6]. As animals and insects, the swarm of
robots is limited in capabilities, with no knowledge of the
environment or the position of targets and no communication
and cooperation. Searching for targets when there is insuf-
ficient time to explore the entire search space and limited
knowledge about the search space involves necessarily random
walks. Random walk can be used for both local and global
search, depending on step sizes and the way to generate new
solutions. The fine tune between intensification (exploitation)
and diversification (exploration) is very essential for any search
algorithm to perform well [7]. Too little exploration and too
much exploitation could cause the system to be trapped in local
optima which makes it very difficult to find all the targets over
the whole search space. While exploration via randomization
provides a good way to move away from local search to
global search, giving the chance to search on other regions of
the search space. The optimal trade-off between exploration
and exploitation depends on the distribution of targets. Lévy
random walks are assumed to be optimal when targets are
sparsely distributed. Lévy walk is used in local and global
search with a simple tuning of its cauchy scale parameter to get
small steps in exploitation state. A Lévy pattern in a swarm of
walkers allows the individual to visit new sites that the swarm

has not visited [8].

Lévy walk presents best random walk strategies when
targets are sparsely distributed in the search space. However,
due to the super diffusive behavior they present, some tuning is
needed to improve their performance, specifically when targets
are clustered. We attempt to minimize the super diffusive
behavior of Lévy walk through increasing the time spent in
local search (or intensification) whenever a target is located
by using a satisfaction parameter. The algorithm presented
here is the first stage towards a new Firefly-based [9] search
algorithm that we are developing. The proposed algorithm is
used to guarantee the global random search and to avoid the
intensive search provided by Firefly algorithm. Swarm robotics
are considered as Multi-Agent Systems (MAS) with real robots
and their validation need robotic frameworks rather than MAS
oriented framework [10]. To prove the effectiveness of the
enhanced Lévy Walk algorithm regarding the original one, a
set of computer simulations in the ARGoS framework [11] are
defined and executed.

The remainder of the paper is organized as follows: the
related works are discussed in Section II. Then, we present
the proposed algorithm and the behavioral model of robots in
Section III. We discuss the results in Section IV and conclude
in Section V.

II. BACKGROUND

Lévy walks are random walk patterns, whose step length
is drawn from the Lévy distribution often in terms of a
simple power-law formula. The direction of search at each
step is drawn from a uniform distribution and is independent
with respect to the previous steps [8]. They are efficient
random walks in exploring unknown, large scale search space.
They ensure properties such as robustness, scalability and
adaptability. Two alternatives of the Lévy patterns are: Lévy
flight and Lévy walk. A Lévy flight motion is a result of
visiting disconnected points through jumping or flying. While
a Lévy walk motion results from considering space between
the disconnected points to be part of the searched area [12].
Since we use a swarm of walking robots, we consider a Lévy
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walk motion in the proposed algorithm. We present in below
the works which constitute the background of the proposed
algorithm.

Authors in [13], optimize the Lévy Flight algorithm with
a novel adaptation strategy based on the Firefly Optimization
algorithm (FO) [14] in order to locate targets in underwater
environments. Two modifications were done on the original
algorithm. The first one concerns the attractiveness parameter.
The second one consists in the replacement of the random
motion of the FO with a random number from the Lévy
distribution. The authors provide simulation-based experiments
and real experiments with a limited number of robots.

Katada et al. consider in [15] a multi-target detection
problem. They employ a random walk and Lévy Flight in
a subsumption architecture [16]. Robots communicate with
a base station through relay robots due to the multi-hop
transmission of wireless communication. They study the effect
of the step size of the random walk and the number of robots
in a target detection problem. One step in the random walk
strategy is set to 6 seconds. A step size in Lévy Flight is
determined according to a Lévy probability distribution where
the maximum step size is set to 30.

Dimidov et al. study in [17] Correlated Random Walk
(CRW) and Lévy Walk (LW). They address a hybrid form that
joins together the non-uniform distribution of tuning angles
and the heavy-tail distribution of step lengths. So that both
correlated movements and long relocations can be obtained at
the same time.

III. PROPOSED ALGORITHM

In the proposed search algorithm, we consider two states:
exploration and exploitation. In both states, step lengths are
generated by cauchy distribution given by Equation 1. How-
ever, the cauchy scale is fixed to 0 and 10 in exploration
and exploitation states respectively to generate large and small
step lengths. Then, the novelty we made to the original Lévy
walk algorithm, is to increase the time spent in intensification
each time a target is found, through a satisfaction parameter
in robots. Robots are limited in computation and storage
capabilities.

The proposed algorithm can be summarized in the follow-
ing steps. A pseudo code of the detailed algorithm is presented
in Algorithm 1 and the State Diagram of the robot’s controller
is shown in Figure 1.

1) Step1: walk straight for a step length generated by
cauchy distribution given by Equation 1.

2) Step2: start an intensive search for time T and
whenever Satisfaction 6= 0, while increasing the
satisfaction each time a target is found and decreasing
it when no target is found. When T = 0 and
Satisfaction = 0, return to Step 1, else repeat Step
2.

Q(p;x, γ) = x+ γ ∗ tan[π ∗ (p− 1/2)] (1)

where :
− x is cauchy location (real);
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Fig. 1. State diagram of the controller

− γ > 0 is cauchy scale (real);
− p ∈ (−∞,+∞);

Algorithm 1: Pseudo code of the proposed Lévy-based
Search Algorithm

Data: Rn, Tmax, Tn = 0
Result: Tn

1 Initialize population with random positions and constant
velocities;

2 Exploration State
3 repeat
4 Generate a new step length and move randomly

using Equation 1;
5 until (∃ Obstacle) ‖ (∃ Target) ‖ (Extent point));
6 if (∃ Obstacle) then
7 Goto 25:
8 else
9 Goto 10:

10 Exploitation State
11 Satisfaction← 0; T ← Tmax;
12 repeat
13 if (∃ Target) then
14 Satisfaction← Satisfaction+ 1;
15 Tn ← Tn + 1;
16 Destruct target;
17 else
18 Satisfaction← Satisfaction− 1;

19 if (∃ Obstacle) then
20 Goto 25:
21 else
22 Generate a new step length and move randomly

using Equation 1;

23 T ← T − 1;
24 until (Satisfaction = 0)and(T = 0);
25 Goto 2:
26 Obstacle Avoidance State
27 Turn with fixed degree;
28 Return to the related state (Goto 10: or Goto 2:)

IV. SIMULATION-BASED EXPERIMENTS

In this study, we focus on the search of multiple targets
(uniformly distributed and clustered) by a swarm of N robots.
The experimental simulation is implemented in the multi-
physics robot simulator ARGoS [11] which is able to simulate
efficiently large-scale swarms of robots of any kind. We



(a) (b)

(c) (d)

Fig. 2. Search space of the three scenarios in Table I

perform several computer simulations to test the performance
of the proposed algorithm varying several criteria (number
of robots, distributions of targets and environment size). The
performances of the proposed algorithm are compared with the
performances obtained by Lévy walk algorithm. As these are
stochastic algorithms, data presented here are representative of
30 simulation executions where the STandard Deviation (STD)
is reported to ensure the probabilistic quality of results.

Robots, environment and targets are modeled as follows:

• Robots: are footbots represented by a circle of radius
rR = 8cm, a higher of HR = 15cm, Proximity
Sensors PSR = 12 frontal sensor, Proximity Sen-
sor Ring Range ProximityRangeR = 0.3f . Robots
can sense targets and obstacles in their range of vision.
They can move with constant velocity v = 80 cm/s.
They do not communicate with each other. They
avoid other robots and obstacles when encountered
by changing the angle of motion. Initial positions of
robots are uniformly distributed in the search space.

• Environment: is a finite two dimensional space. It
contains obstacles in rectangular and square forms,
distributed uniformly in the search space.

• Target: represented by a circle of radius rt = 0.05f
with green color. Targets are uniformly distributed
or grouped in clusters with a predefined number of
targets.

A. Experimental Setups

Table I illustrates the realized simulation scenarios. Sim-
ulations are run for 480 seconds in the three scenarios. In
scenarios 1 and 2, the number of targets in each cluster is 100
targets. In scenario 3, we perform two sub-scenarios: in the
first we uniformly distribute targets and we vary them from
40 to 200 target, in the second, we group the 200 target in
clusters and we vary the number of clusters from 2 − 10.
Each simulation is run for 480s and the obstacle density in
all simulations is 8% . The simulation search space is shown
in Figure 2.

TABLE I. PARAMETERS OF SCENARIO 1, SCENARIO 2, SCENARIO 3
AND SCENARIO 4

Parameter Value

Scenario 1: Number of Found Targets

Robots Number 20, 40, 60, 80, 100

Target Distribution clustered

Targets Number 800

Clusters Number 8

Environment size 120m × 120m

Scenario 2: Number of Found Targets

Robots Number 20

Target Distribution clustered

Targets Number 800

Clusters Number 8

Environment size 20m × 20m to 240m × 240m

Scenario 3: Targets Distribution

Robots Number 30

Target Distribution clustered

Targets Number 200

Clusters Number 2 − 10

Environment size 120m × 120m

Scenario 4: clustered vs Uniform

Robots Number 30

Target Distribution Uniform − clustered

Targets Number 40, 80, 120, 160, 200

Clusters Number 2 − 10

Environment size 120m × 120m

TABLE II. NUMBER OF FOUND TARGETS ANALYSIS (SCENARIO 1)

20 40 60 80 100

Proposed 341,5 434,97 591,3 704,2 783,16

STD 8,09 6,06 5,97 6,48 4,86

Lévy walk 172,97 275,47 482,7 579,6 694,57

STD 15,92 15,66 15,92 23,56 26,39

B. Results and Discussion

1) The total number of found targets increases while
increasing the robots number (see Table II and Figure
3(a)). With the parameters that have been considered
in scenario 1 (see Table I) over 100 robots, the
total number of found targets tends to be stable. The
proposed algorithm overcomes the original one at
least by 80 target and at maximum by 168 targets.
We reported here the STD to measure the dispersion
of simulations regarding the average one. In the
proposed algorithm, the STD is < 10, the results are
very close to the average, thus they are significant.
In Lévy walk algorithm simulation, the variation is
normal (STD between 10−20), but it is important in
the two last simulations (STD between 20− 30).

2) The total number of found targets decreases while
the environment size increases (see Table III and
Figure 3(b)). The proposed algorithm overcomes the
original one with 52 to 234 targets. Results stabilize
when the size of environment is over 240m× 240m.
The variations in STD go till normal in the proposed
algorithm, while they are normal in the original one.

3) When increasing the number of clusters, the total
number of found targets slowly increases (see Table
IV and Figure 3(c)). In the proposed algorithm,
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Fig. 3. Simulation results : (a) Results of scenario 1, (b) Results of scenario 2, (e) Results of scenario 3, (f) Results of scenario 4.

TABLE III. NUMBER OF FOUND TARGETS ANALYSIS (SCENARIO 2)

40 × 40 60 × 60 80 × 80 120 × 120 240 × 240

Proposed 726,03 577,27 392,2 345 97,7

STD 6,23 8,82 10,69 11,16 11,34

Lévy walk 589,69 342,53 286,57 156,07 44,83

STD 11,11 11,21 20,55 21,73 15,78

the increase reaches its maximum 17 targets when
number of clusters is increased from 6 to 8. It has
decreased with 4 targets when the number of clusters
is increased from 2 to 4. While in the original algo-
rithm the increase is fast, it reaches 36 target when
increasing the number of clusters from 6 to 8. The
proposed algorithm overcomes the original one with
a maximum difference of 97 target when the number
of clusters is 2. Results in the proposed algorithm are
very close (STD between 1−4), while they are normal
in the original algorithm (STD between 7− 12).

4) The total number of found targets increases while
increasing the number of targets dispersed in the
environment in the two configurations (see Table V
and Figure 3(d)). This number is greater when targets
are clustered. The difference reaches its highest value

TABLE IV. CLUSTERED DISTRIBUTION OF TARGETS (SCENARIO 3)

2 4 6 8 10

Proposed 179,06 175,27 178,77 196,73 198,47

STD 3,98 3,93 4,12 1,96 1,5

Lévy walk 81,37 88,47 102,4 138,97 170,87

STD 12,8 12,58 11,95 11,23 7,753

(92 target) when the number of targets is 160 and
the number of clusters in the second configuration
is 8. When targets are clustered, results are better
from the uniform distribution due to the incitation
on exploitation while the region is rich of objects.
Results in the two configurations are very close (STD
between 1− 4).

V. CONCLUSION

In this paper, we enhanced the performance of the orig-
inal Lévy walk algorithm in a destructive foraging scenario.
The proposed Lévy walk-based strategy presents a significant
improvement due to the increase in the exploitation state when-
ever a target is found. The results obtained by the proposed
algorithm overcome the Lévy walk algorithm in the different



TABLE V. CLUSTERED VERSUS UNIFORM DISTRIBUTION OF

TARGETS IN THE PROPOSED ALGORITHM (SCENARIO 3)

2 4 6 8 10

Without Clusters 22,1 30,5 33,13 48,17 90,1

STD 3,38 2,42 3,66 3,89 4,02

With Clusters 26,13 57 92,93 140,37 166,2

STD 2,29 1,79 2,42 2,6 2,91

presented configurations. In particular, the proposed algorithm
is more efficient in a clustered target environment.

The proposed algorithm is the first step towards a new
search strategy based on a bio-inspired algorithm (Firefly)
which can be applied to several robotic applications. Currently,
we are working on the interaction protocol to allow coopera-
tion between robots. We intend in the future to: (1) consider
the limitation of robot’s energy as in our previous works [18],
(2) adapt and test the efficiency of the proposed algorithm on
foraging scenarios [19].
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