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Abstract

Swarm robotics is focused on creating intelligent systems from large number of
simple robots. The majority of nowadays robots are bound to operations within
mono-modal locomotion (i.e. land, air or water). However, some animals have
the capacity to alter their locomotion modalities to suit various terrains, oper-
ating at high levels of competence in a range of substrates. One of the most
significant challenges in bio-inspired robotics is to determine how to use multi-
modal locomotion to help robots perform a variety of tasks. In this paper, we
investigate the use of multi-modal locomotion on a swarm of robots through a
multi-target search algorithm inspired from the behavior of flying ants. Features
of swarm intelligence such as distributivity, robustness and scalability are en-
sured by the proposed algorithm. Although the simplicity of movement policies
of each agent, complex and efficient exploration is achieved at the team level.

Keywords: Swarm intelligence, Swarm robotics, Multi-target search, Random
walk, Stigmergy, Multi-modal locomotion

1. Introduction

A search is defined as the action to look into or over carefully and thoroughly
in an effort to find or discover something [I]. When agents lack information re-
garding targets, systematic searches become less effective and using random
walk can enhance the chance of locating resources by increasing the chances
of covering certain regions. In random strategies, the random walker (mobile
robot or synthetic agent) returns to the same point many times before finally
wandering away, which affects determinant parameters such as energy consump-
tion [2], time and risks of malfunctions of agents. Stigmergy-based coordination
allows very efficient distributed control and optimization. It has several other
properties which are also essential to multi-robot systems, including robustness,
scalability, adaptability and simplicity [3].

In [4] a cooperative and distributed coordination strategy called Inverse
Ant System-Based Surveillance System (IAS-SS) is applied to exploration and
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surveillance of unknown environments. It is a modified version of the artificial
ant system, where the pheromone left has the property of repelling robots rather
than attracting them. A guided probabilistic exploration strategy for unknown
areas is presented in [5], it is based on stigmergic communication and com-
bines the random walk movements and the stigmergic guidance. The paper [@],
provides a simple foraging algorithm that works asynchronously with identical
ants, based on marking visited grid points with pheromone. It lacks robustness
to faults. Authors in [7], propose a swarm intelligence based algorithm for dis-
tribute search and collective clean up. In this algorithm, the map is divided into
a set of distinct sub-areas and each sub-area is divided into some grid. Each
robot decides individually based on its local information to which subarea it
should move. A direct communication via WIFI model is used between robots
and their neighbors. The paper [§], introduces the Ants Nearby Treasure Search
(ANTS) problem, in which identical agents, initially placed at some central lo-
cation, collectively search for a treasure in a two-dimensional plane without any
communication. A survey of online algorithms for searching and exploration in
the plane is given in [9].

Swarm robotics is the study of how a large number of simple physically em-
bodied agents can be designed such that a desired collective behavior emerges
from the local interaction among agents and between agents and the environ-
ment. The mono-modal locomotion has been the principal interest of swarm
robotics [10] for so long period but also using heterogeneous robots with dif-
ferent locomotion has been investigated [11]. However, multi-modal locomotion
seems to be very interesting in order to allow agents performing a variety of
tasks adaptively in different environments. Swarm robotics with mono-modal
locomotion remains an active research area whose promise remains to be demon-
strated in an industrial setting. Swarm robotics with multi-modal locomotion
constitutes a new orientation that can benefit from the developed applications
and open the issue to the development of new coordination and cooperation
strategies.

Flying Ant-like Searcher Algorithm (FASA), proposed in this paper, is a
multi-target search algorithm. In order to avoid returning to the same place
several times in a random walk search strategy we used stigmergic communi-
cation through pheromone to mark covered regions. Through simulations we
observe that agents get stuck in covered regions when their number is high and
only some of them can get out of the covered regions. Therefore we propose the
flying behavior whenever the neighborhood is totally covered, then we use flying
behavior to return to specific locations which we call best positions, memorized
by the agent when its current cell has at least one neighbor not covered yet.
These cells are considered best positions because they allow a gradual search
from the starting point and the flying behavior of agents to such cells ensures
that all previous cells will be covered before going far away from them. It is an
algorithm with a low computational complexity and designed for agents (and so
far for robots) with very simple low-range sensors and indirect communication
known as stigmergy.

The rest of the paper is organized as follows: in section [2] we present the



problem formulation. In section [3] we present the behavior of ants from which
the proposed algorithm is inspired and then we give the finite state machine
of our agents and the pseudo code of the proposed algorithm. In section [d] we
present the scenarios and performance metrics used in simulations, after that,
we present the obtained results and compare them with Random Walk (RW)
and Stigmergic Random Walk (SRW). We finish with a conclusion and future
perspectives in section E[

2. Problem Formulation

In a collective multi-target search task, there are a lot of targets randomly
distributed in an area. The agents (robots) should find as fast as possible the
targets and, after that, remove them, if we deal with a cleanup task, or transport
them to a nest, if we deal with a foraging task [2] [3]. In this work, we intend
to design a search algorithm which allows a group of simple agents to locate a
set of targets placed at random positions in the search space. The finish time
of the collective search is when all targets have been found.

The basic concepts we use in the rest of the paper are defined as follow:

e Environment- A two dimensional finite grid F with NXM size. E =
Efree U Eoccupied, Where Eoccupieda denotes the subset of E containing
the cell occupied by obstacles, targets or agents and Efrce = Feovered
U EnNcovered Where Ecoyereq denotes the subset of Ey... containing the
covered cells (containing a pheromone) and Encopereq denotes the subset
of E¢ree containing the not yet covered cells. We define also Epes: as a
subset of Eeopereq containing the best positions stored by an agent. We
denote a current cell C, with coordinates (x,y) € FEpest if 3 at least a
neighbor cell C,, with coordinates (z — 1,y), (x+1,%), (x,y — 1), (z,y+ 1)
€ ENcovered-

e Target- A set of static objects T' = t;...t,,, where n, the total number of
targets is >= 1 and each t; is placed at random positions in F.

e Agent- An Ant-like agent, which is capable of:

1. Perceiving the four neighboring cells (detect the presence of pheromone,
targets and obstacles);

2. Depositing pheromone on current cell (to mark it as covered);

Localizing itself;

4. Moving and flying. Moving corresponds to one move from cell A to
cell B with a distance of one step in one of the four directions up,
down, left or right, while in flying the distance is >= 1;

et

5. Memorizing the coordinates of best position cells;

e Pheromone (P)- Chemical substance deposited by agents on visited cells
to mark them as covered. It evaporates with time t.



3. Flying Ant-like Searcher Algorithm (FASA)

The FASA algorithm is a combination of random walk, stigmergic commu-
nication, and systematic search (using stored information). We provide the
agents with the capacity to fly like flying ants. While workers of the Campono-
tus japonicus species [I2] do not have wings, young female and male have them.
They use them to fly away from their nest for mating and building their own
colony. Figures [L(a)l [L(b)| and [L(c)| represent the behavioral model of worker,
male and female of Camponotus japonicus ants and Figure [2| represents the be-
havior of our Flying Ant-like Searcher agent which combines the behaviors of
worker and male (or female) Camponotus japonicus ants.
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Figure 1: Behavioral model of: (a) worker, (b) male and (c) female Camponotus
japonicus ants

Some particularities of FASA are: (1) agents explore gradually the sub-space
in which they were initially deployed, (2) robustness to failure is provided as
it works since a single agent is alive, (3) initial positions of agents, the geome-

try of the search space, complexity of obstacles do not influence the algorithm
performances.

FASA consists of three steps:

1. Sets a temporization ¢ to a random (value);
2. The agent repeats the following steps until ¢ = 0:

Stores the coordinates of the current cell C. in Epgqg, if it has at
least one neighbor not yet covered;

Deposits P on current cell C¢;

Moves to one of the four neighbors not yet covered;
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Figure 2: State transition diagram of FASA Agents

Algorithm 1: FASA

1 while Targets not reached do
2 t + random (value)

3 EBest — @

4 while ¢t # 0 do
5
6

if 3 C,, (a neighbor of C.) € ENncovered then
L push_front C. in Eps

7 Deposit P on C.

8 Move randomly to C; € Encovered

9 t < t — time_step
10 if Epest # () then
11 Fly to first element in Epest
12 while (Epcs # 0) and (3 a neighbor of Cpest € Encovered) do
13 Remove first element of Epegt
14 Fly to next Cpest € EBest

15 while (C. € E.opered) or (all neighbors of C. € Eecopered) do
16 L fly randomly to new cell

3. Flies to the first best position in Epeg. If Epest is void, keeps flying to
random cells until finding a non covered cell or a cell having non covered
neighbors and go to 1.

4. Performance Evaluation

4.1. Simulation Scenarios and Performance Metrics
Simulations are implemented and run on a Java-based simulation platform
(Netlogo [13]). In all our experiments, targets were considered non-mobile. Ini-



Table 1: Experimental initialization of random value

4 9 14 21 43 50 100

Time 1096 643 625 597 278 561 569
Targets Found 169 230 188 163 285 230 228

tial conditions such as: World Size (WS), Agents Number (AN), Obstacles Den-
sity (OD) — the total amount of obstacles is calculated by: AmountofObstacles =
OD x (werldsize) _ and Number of Targets (NT), were varied from a scenario
to another. We used obstacles with complex shapes for simulations of obstacle
environments.

We used two metrics to evaluate the performance of our algorithm. We
compare it to random walk (RW) [I4] and to Stigmergic Random Walk (SRW)
where robots use stigmergic communication to avoid already visited cells when
they lay pheromone trails [I5]:

e Search Time: is the time in seconds needed to discover all the targets in
the environment.

e Search Efficiency: is defined by [T}

Targets found

Searchers = x 100 (1)

Targetstotal

where: Search.s; denotes the percentage of found targets over the total
number of targets, Targetssounqd denotes the number of found targets
during an elapsed time ¢ and Targets;otq denotes the total number of
targets placed at the environment.

We defined two scenarios where targets are placed randomly and agents start
all from the center of the environment. The time ¢ spent in random walk is fixed
after experiments to random (z) with x = 43 (see Table. We varied value from
4 to 100 and then we recorded in the first scenario the average time required
to find all the targets and in the second scenario the number of targets found.
With Random (43), the time is the lowest and the number of targets found is
the highest among the other values. Each simulation is performed 10 times,
then the mean and standard deviation for each metric are computed:

e Scenario 1: to test the scalability of the algorithm, when increasing agents
number. We fix the WS to 500 x 500 cells (Netlogo units), the NT to 40,
the OD to 70% and we vary AN from 100 to 4000. We fix the time for
each simulation to 240 sec and we report at the end the mean value of
Searcheyy.

e Scenario 2: to test the efficiency of search in larger environments. We fix
AN to 300, NT to 40, OD to 70% and we vary WS from 200 x 200 cells
to 1000 x 1000 cells.



4.2. Results and Discussion

Through the obtained results, FASA outperforms the two other protocols in
both scenario 1 and 2. It is more efficient in locating targets and faster than
the two others in searching the total number of targets in larger environments.

In scenario 1, the Searchess in FASA increases when increasing AN, it is
about 48% with 100 agents and 100% over 300 agent. Also the search time
decreases when increasing AN, from 225 sec (300 agents) to 95 sec (2000 agents)
but over 4000 agents the search time starts at increasing (105 sec). FASA gives
better results than SRW and RW algorithms. SRW’s Searcheys reaches 90%
with 300 agents and then decreases till 28% with 4000 agents. RW gives the
worst Searchesy¢ since there is no guidance in search, the Searchcyss increases
slowly from 12% to 24% (with 100 to 800 agents respectively) over 800 agents
it decreases till 7% with 4000 agents. Using large number of agents in SRW
or RW causes agents to get stuck in already covered regions and agents keep
turning in a closed covered region, while in FASA the flying behavior helps the
agents to get out of the closed covered region and give them the chance to cover
more regions and to find more targets (see Table 2| and Figure for detailed
results).

Table 2: Searcheysy of FASA, SRW and RW when increasing AN

100 300 500 800 1000 2000 4000
FASA Searchesy 48% 100% 100% 100% 100% 100% 100%

FASA Search Time 240 225 164 113 106 95 105
SRW 40% 90% 25% 30%  32%  32%  28%
RW 12% 18% 18% 24% 23% 10% ™%

Table 3: Search Time of FASA, SRW and RW when increasing WS

200x200 400x400 800x800 1000x1000

FASA 19 109 1215 2793
STD 1 10 83 111
SRW 201 1077 13554 26031
STD 46 354 1309 2761
RW 433 1686 20669 39941
STD 65 216 18661 37538

In scenario 2, search time increases in the three algorithms when increasing
WS. FASA gives better results than SRW and RW. The search in SRW and RW
becomes inefficient when world size is over 400 x 400 cells. In FASA the return
to best positions by flying behavior results in gradual search over the whole
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Figure 3: Simulation results of FASA, SRW and RW : (a) Search.sy when
increasing AN, (b) Search Time when increasing WS

search space even if there is some redundancy while searching (see Table 3| and
Figure [3(b)| for detailed results).

5. Conclusion

We presented in this paper a multi-target search algorithm called FASA.
It tends to introduce guidance in search through pheromone, getting out from
covered regions through the flying behavior and enabling a gradual search that
ensures the completeness of the algorithm through the flying to best positions
(stored while searching). Results obtained in comparison to random walk and
pheromone guided random walk are promising. Parameters such as the random
time of search and the distance of fly needs to be improved through simulations.

Stigmergic communication via pheromone has shown to efficiently coordinate
a team of robots and to allow them to quickly explore a given area [16]. Simula-
tions can support the analysis and improvement of pheromone-based algorithms
before their real robotic implementation [5]. However, the implementation of
the pheromone itself in real world constitutes a challenging technical issue. Sev-
eral works proposed mechanisms to the real implementation of pheromone as:
(i) physical marks using: virtual marks [16] or RFID tags [17], (ii) a model
to be transmitted using wireless network [I8], (iii) virtual pheromone trans-
mitted using infrared communication [19], (iv) beacons where robots are used
as pheromones [20]. Despite the proposed approaches, the implementation of
pheromone is still in its early development stages and most of the works are
available in research laboratories.

In order to test the applicability of the proposed algorithm, we intend to
implement it in a robotic platform (ARGoS [21], Gazebo [22]) by also exploiting
specific MAS-based methodologies [23] [24].
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