
Engineering Applications of Artificial Intelligence 50 (2016) 302–319
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
http://d
0952-19

n Corr
E-m

seridiha
g.fortino
journal homepage: www.elsevier.com/locate/engappai
A Cooperative Switching Algorithm for Multi-Agent Foraging

Ouarda Zedadra a,b,n, Hamid Seridi b, Nicolas Jouandeau c, Giancarlo Fortino d

a Department of Computer Science, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria
b LabSTIC Laboratory, 8 May 1945 University, P.O. Box 401, 24000 Guelma, Algeria
c LIASD, Paris 8 University, France
d DIMES, Universita' della Calabria, Via P. Bucci, cubo 41c - 87036 - Rende (CS) - Italy
a r t i c l e i n f o

Article history:
Received 18 April 2015
Received in revised form
4 January 2016
Accepted 11 January 2016

Keywords:
Multi-agent system
Coordination
Stigmergy
Stigmergic Multi-Ant Search Area (S-MASA)
algorithm
Multi-agent Search
Multi-Agent Foraging
x.doi.org/10.1016/j.engappai.2016.01.025
76/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: zedadra_nawel1@yahoo.fr (O. Z
mid@yahoo.fr (H. Seridi), n@ai.univ-paris8.fr
@unical.it (G. Fortino).
a b s t r a c t

The foraging task is one of the canonical testbeds for cooperative robotics, in which a collection of robots
have to find and transport one or more objects to specific storagepoints. Efficiency in foraging can be
improved with coordinated team of robots. Swarm robotics investigates the bio-inspired behaviors of
simple species, that provide complex behaviors at the group level. We present a multiagent foraging
algorithm named Cooperative Switching Algorithm for Foraging (C-SAF) inspired from the classical ant
system. It provides a quick search, optimal homing paths and quick exploitation of food. A qualitative
comparison between some foraging related works and the proposed algorithm is given here, as well as a
quantitative comparison which shows that our algorithm outperforms the reference c-marking algorithm
across a range of different scenarios.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-Agent Systems are a suitable approach to develop many
multi-robot distributed applications such as: mine detecting (Acar
et al., 2003; Gage, 1995), search in damaged buildings (Kantor et al.,
2006; Jennings et al., 1997), fire fighting (Marjovi et al., 2009), and
exploration of spaces (Landis, 2003; Schilling and Jungius, 1996),
where neither a map, nor a Global Positioning System (GPS) are
available (Batalin and Sukhatme, 2002). The efficiency of the group of
robots in this case can be dramatically improved through coordina-
tion. Coordination issues (Yan et al., 2013) of multi-robot systems are
considering more robots and more complex tasks, sometimes
including robots and humans together. Swarm robotics investigates
multi-robot coordination in a distributed way. It is interested in the
implementation of systems which are composed of thousands of
simple robots rather than one single complex robot (Vaughan, 2008).
The challenge is to develop a group of robots with limited perception
and computing capabilities to resolve complex tasks in a collective
and distributed manner. This would allow for reduction of costs with
respect to heavyweight approaches based on powerful and expensive
edadra),
(N. Jouandeau),
cognitive robots/agents. In particular, stigmergic-based coordination
mechanisms have been used in many robotics problems (aggregation
formation and flocking WeiXing et al., 2006, patrolling Pasqualetti
et al., 2010, localization and mapping Stipes et al., 2006, exploration
and fire searching Marjovi et al., 2009), where agents adopt an
indirect communication by depositing pheromone in their environ-
ment. This mechanism takes its inspiration from social insects (ants,
bees, termites) which provide collectively intelligent systems
(Momen, 2013) that, in spite of the simplicity of their individuals,
present a highly structured social organization. As a result of this
organization, ant colonies can accomplish complex tasks that in
some cases far exceed the individual capacities of a single ant (Dorigo
et al., 2000).

Foraging is a complex task that involves the coordination of
multiple subtasks each constituting a difficult task (searching, har-
vesting, homing and unloading). It lends itself to multi-robot sys-
tems, even if the task can be achieved by one single robot, it is
profitable to use multiple robots with careful design of cooperation
and coordination strategies (Winfield, 2009). The sophisticated
foraging behavior observed in social insects, provides inspirations to
produce simple individuals (like ants) that use simple coordination
rules and provide more complex (emergent) behaviors as a whole.

We investigate in this paper the Multi-Agent Foraging problem.
Many approaches to such problem have been proposed in the lit-
erature so far (Momen, 2013; Hoff et al., 2010; Meng et al., 2012; Hoff

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.01.025
http://dx.doi.org/10.1016/j.engappai.2016.01.025
http://dx.doi.org/10.1016/j.engappai.2016.01.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.01.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.01.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.01.025&domain=pdf
mailto:zedadra_nawel1@yahoo.fr
mailto:seridihamid@yahoo.fr
mailto:n@ai.univ-paris8.fr
mailto:g.fortino@unical.it
http://dx.doi.org/10.1016/j.engappai.2016.01.025

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 303
et al., 2013; Lee and Ahn, 2011; Pitonakova et al., 2014). Here, we
propose therefore the Cooperative Switching Algorithm for Foraging
(C-SAF), an extended version of the Multi-Agent Foraging algorithms
in Zedadra et al. (2015a) and Zedadra et al. (2015b). In this paper, we
apply it to large-scale foraging systems with hundreds and thousands
of agents, where we consider a wider range of system sizes than the
ones in literature works (Hoff et al., 2013; Simonin et al., 2014; Shell
et al., 2006) and in our previous work (Zedadra et al., 2015a). We
analyze and qualitatively compare our proposed approach to relevant
related works through an extension of a reference comparison fra-
mework (Winfield, 2009). An in-depth performance evaluation based
on simulation is given that allows us to quantitatively compare our
approach with cooperative and non cooperative foraging approaches.
Results show that C-SAF algorithm takes on average less time to
finish the foraging, returns larger food amounts and provides optimal
food-to-nest paths without the need to revisit a cell several times.
Moreover, it shows to be scalable and presents considerable paral-
lelism with growing agent number. Finally, it outperforms the other
approaches in terms of efficiency and scalability.

The remainder of the paper is organized as follows: Section 2
presents the background concepts and definitions, and the related
work on foraging tasks. Section 3 describes the C-SAF algorithm.
A qualitative comparison between C-SAF and the Non-Cooperative
Switching Algorithm for Foraging (NC-SAF), c-marking and Non-
Cooperative c-marking (NC-c-marking) algorithms, is presented in
Section 4. Section 5 details the different scenarios, obtained results
and quantitative comparison between the four analyzed algo-
rithms. In Section 6, we provide a discussion on how to go towards
a real robotic implementation of our approach. Finally, we draw
conclusions in Section 7 and delineate some future works.
2. Background and related work

2.1. Basic concepts

Here we define and clarify some key terms and concepts that
will be used throughout this paper:

� Agent-Based Modeling (ABM) is a class of computational models
for simulating the actions and interactions of autonomous
agents (both individual or collective entities such as organiza-
tions or groups) with a view to assessing their effects on the
system as a whole and analyzing possible emergent behaviors.

� Swarm Intelligence is the study of natural and artificial systems
of multiple agents that adopt a distributed autonomous control.
Instead, global intelligent behaviors emerge from a cooperating
collection of simple individual behaviors (Bonabeau et al., 1999).

� Stigmergy is a particular form of indirect communication
mediated by modifications of the environment used by social
insects to coordinate their actions (Grassé, 1959).

� Artificial Potential Field (APF) is a wavefront of integer values
written by agents in the environment, to mark the short dis-
tance between any cell and the nest (Simonin et al., 2014).

� Search is defined as the act of looking into or over carefully and
thoroughly in an effort to find or discover something (Méndez
and Bartumeus, 2014).

� Foraging is the act of searching for and collecting food at one or
more storage points. It is a complex task that involves the
coordination of multiple other tasks, such as searching, homing,
and grabbing (Winfield, 2009).
2.2. Multi-Agent Foraging problem definition on 2D grids

In the following, we present a formal definition of the Multi-Agent
Foraging problem on two dimensional grids with one nest. The
environment E is represented as 2D grid of cells of size N�N. E¼EFree
[EObstacles, where EFree denotes the subset of E containing all obstacle-
free cells and EObstacles denotes the subset of E containing obstacles.
EFree ¼ EReachable [EUnreachable, where EReachable denotes the subset of EFree
containing reachable cells (i.e. all cells that are reachable by agents)
and EUnreachable denotes the subset of EFree containing unreachable cells
(i.e. cells enclosed in obstacles). EObstacles is a subset of E defined as a set
of obstacle cells where ObsiDEObstacles. Each cell c¼ ðx; yÞAE has a
maximum of four neighbors ðx�1; yÞ; ðxþ1; yÞ; ðx; y�1Þ; ðx; yþ1Þ. Let
c0 be the origin (or nest) and the starting cell for all the agents posi-
tioned at the center of the environment (coordinates (0,0)). Let EVisited
be the set of cells already visited where EVisitedDEReachable and ENotVisited
the set of cells not yet visited containing at the starting time all the
cells of EReachable except c0 where ENotVisited � EReachable and
EReachable ¼ ENotVisited [EVisited. A is a set of identical agents a0…an,
where n is the total number of agents. Each ai has initial heading
(0°¼up, 90°¼right, 180°¼down or 270°¼ left) and can perceive the
four neighbors in up, right, down, and left directions. N food locations
(referred to as food density), each with M food items (referred to as
concentration) are spread on a set of cells included in the list Cgoal (list
of cells containing a food). Agents do not know the coordinates of the
cells in Cgoal. The goal is therefore to forage all food in Cgoal by mini-
mizing the Tforaging time, i.e. the overall time needed to complete the
foraging task. To guarantee completeness of search and reachability of
food, we assume that obstacles do not partition E and do not enclose
any agent, nest or food cell. Moreover, the problem definition can be
easily generalized from one to many nests.

The components of our Multi-Agent Foraging system (Envir-
onment, Agent, Pheromone) are modeled as follows:

� Environment Model: The environment is organized as a N�N
grid with several food locations, one or multiple sinks (or nests),
obstacles and pheromone markings. The grid is divided into
equal squares in a cartesian coordinate system. Grid maps are
thought to an efficient metric for navigation in large-scale
(Thrun and Bücken, 1996). Obstacles with rectangular or square
shapes take place on some fixed cells, the nest is at the center
(in a multi-sinks space, sinks take specific positions). N food
with M items take fixed positions on the grid. In the offline
version of searching, an agent has already the map of the world
and plans its path before starting the search. Whereas, in the
online version the agent plans the path directly when searching.
The online version of the grid-based exploration has received
considerable attention due to its applicability in practice since
grids represent a natural discretization of planar environments
(Thrun and Bücken, 1996). It is often used for solving tasks like
path planning, localization, search, coverage and surveillance
(Balch, 1996; Yean and Chetty, 2012; Lau et al., 2013; Panov and
Koceska, 2014; Gabriely and Rimon, 2002; Choi et al., 2009).
Apart from 2D-grids, that are the most used environments in
the Multi-Agent Foraging problem, other approaches do exist.
For instance, topological approaches such as those described in
Mataric (1994); Gutjahr (2000) and Dorigo et al. (2006),
represent robot environments by graphs. Nodes in such graphs
correspond to distinct situations, places, or landmarks. They are
connected by arcs if there exists a direct path between them.

� Agent Model: Agents are modelled as simple, reactive ant-like
agents that can move in the four directions up, down, right and left,

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319304
corresponding to 0°, 90°, 180° and 270° headings, respectively.
Agent can detect pheromone at a specific distance (at one cell step).
At each move, agents deposit an amount of pheromone to mark the
current cell as already visited.

� Pheromone Model: As in traditional ant system, agents in our
model release pheromone on the ground on their visited cells or
even in their four neighboring cells. The pheromone evaporates
according to a specific rate. The total amount of pheromone that
evaporates at the position i in time t is modeled as in Eq. (1):

Γiðtþ1Þ ¼ΓiðtÞ�pnΓiðtÞ ð1Þ
where p is a coefficient which represents the evaporation rate of
trail between time t and (tþ1).

2.3. S-MASA algorithm

The S-MASA algorithm (Zedadra et al., 2014), was proposed for
multi-target search and foraging tasks. It is designed according to the
main ideas of the artificial ant system (Dorigo et al., 2000; Kuyucu et al.,
2012; Calvo et al., 2011) and the water vortex dynamics. Basically, the
system is a group of homogenous artificial agents (e.g. robots) moving
and taking decisions based on the stimuli received from the environ-
ment. While agents navigate, they deposit pheromone to mark visited
cells and can sense the existence of pheromone in their vicinity. The
absence of pheromone in its right cell calls the agent to change its
heading and to move to its right cell, else the agent will keep going
forward in its current heading. We adopt in this algorithm the opposite
logic of ant system theory. So, instead of following the cells that contain
pheromone, our agents are guided to not yet visited cells (where no
pheromone is present). S-MASA provides: (1) a quick search by the
large dispersion of agents when avoiding already visited cells, opti-
mizing by this their chance to find food, (2) optimal paths to return to
nest result from the wavefront of pheromone concentration expansion
created by agents simultaneously when exploring.

The Detect_Pheromone_Adjust_Heading_And_Move() (detailed in
Algorithm 1) is used to extract the stimuli and to decide about the next
move to take. The agent changes its heading according to rules in
Algorithm 1 if there is no pheromone in its right cell (Fig.1) else it keeps
its heading unchanged. The avoid_obstacle() procedure is used to avoid
obstacles. Specifically, agents turn around obstacles in the direction of
already visited cells until encountering a not yet visited cell, which
means the obstacle is avoided and agents can continue their search.

Algorithm 1. Detect_Pheromone_Adjust_Heading_And_Move.
if (
i
⌊

e
⌊

m

6666666664
els

⌊m
els
∄ pheromone in right cell) then
fðcurrent_heading¼ 270Þ then

Set heading to 0;
lse
Set heading to current_headingþ90;

ove forward of 1 cell in the heading direction;
e if ((pheromone in right cell) and (the front cell is not an
obstacle) then
ove forward of 1 cell in the heading direction
e if ((pheromone in right cell) and (the front cell is an
obstacle) then
oid_obstacleðÞ;
⌊av

Statement 2.1. Considering a set of agents performing Algorithm 1
in a bounded 2D Grid obstacle-free environment (see Section 2.2),
each cell will be visited.

Proof. According to Algorithm 1, an agent ai moves to cx A ENotVisited
in its right direction if it exists, else it moves to cx A EReachable in its
front direction. Each move of ai changes the state of cx to visited, thus
reducing ENotVisited and extending EVisited. Since ENotVisited is limited,
Algorithm 1 is complete because the number of moves is bounded by
the number of cells in ENotVisited and, at each step, a cell from ENotVisited is
moved to EVisited; at a given time ti, all cells are in EVisited and ENotVisited
is empty.

Statement 2.2. Considering a set of agents performing Algorithm 1
in a bounded 2D Grid obstacle environment (see Section 2.2), each
reachable cell will be visited.

Proof. The strategy used by an agent ai to avoid an obstacle is to get
around the obstacle in the direction of already visited cells until
encountering cx A ENotVisited. According to Algorithm 1, ai performs the
following steps: (1) looks for cx A ENotVisited in its right heading, if there
exists, it moves to it; (2) else, it looks for cx A EReachable in its front
heading, if such a cell exists it moves to it; (3) else, if the cell in front A
EObstacles then ai avoids the obstacle as follows: (i) keeps moving to cx
A EReachable in its right direction until it locates a cx A EReachable in front
direction; (ii) it keeps then moving to cx A EReachable in its front
direction until it locates a cx A ENotVisited in right, front or left heading
respectively. As Obsi is finite, in a finite time the ai avoids the obstacle
and reaches a cell cx A ENotVisited, it moves to such a cell and then
restart from step (1). At each step, ai changes the state of cx to visited,
thus reducing ENotVisited and extending EVisited. Since ENotVisited is limited,
the number of moves is limited too and because each move ends with
the addition of a new cell to EVisited, at a given time ti, all cells are in
EVisited and ENotVisited is empty, thus the search process ends.

2.4. Related work

The problem of coordination of multiple agents is considered
complex (Speranzon, 2006; WeiXing et al., 2006). Pheromone-based
coordination, inspired by the way social insects coordinate via leaving
marks in their environment, provides fundamentals to design alter-
native strategies that overcome the difficulties (Barnes et al., 2006)
imposed by mathematical formulations, agent and environment
models (Jiang, 2006; Freeman et al., 2006). Pheromone-based coor-
dination has beenwidely applied in exploration and surveillance tasks
(Calvo et al., 2011; Kuyucu et al., 2012; Marjovi et al., 2009), distributed
search and collective cleanup (Liu et al., 2010; Feinerman et al., 2012),
multi-target search (Zedadra et al., 2014) and foraging (Fortino et al.,
2014).

As we are interested in Multi-Agent Foraging, below we present
relevant literature works on Multi-Agent Foraging. In Hoff et al. (2010),
authors propose two decentralized foraging algorithms inspired by
ants behavior. Robots are simple in sensing and processing power,
they communicate with each other in neighborhood using simple
InfraRed ring architecture. However, instead of using chemical pher-
omone, beacon robots are used to store virtual pheromone. The
approach is very costly in number of robots (beacons) required to
create the paths. The models proposed in Meng et al. (2012) are two
ant colony foraging models adapting Panait's and Wilinskey's models
(Panait and Luke, 2004; Wilensky, 1997), by introducing direct inter-
action (via direct communication) besides indirect interaction (via
pheromone). The proposedmodels improve the ability of the colony to
find the shortest paths, however, agents need memory to store addi-
tional information about food location. The foraging problem was
investigated in Hoff et al. (2013) through three algorithms (gradient,
sweeper and adaptive). In the three algorithms, robots need to com-
municate directly their current position and food position to their
neighbors. In the gradient algorithm, agents broadcast information
about nest and food gradients, they switch from beacon to walker
robots according to some criteria. While in the sweeper algorithm,
agents use virtual forces to form a line expanding from nest to food

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 305
that sweeps the search world like the hand of clock; when food is
found some robots remain as beacons while others act like walkers.
The search becomes slower with long robot lines. The third algorithm
(adaptive) helps the colony to switch between the two aforementioned
algorithms: for close food they use gradient algorithm, for far distance
food they use sweeper algorithm and when the number of robots is
not sufficient to cover the whole world, robots switch to use random
walk. Introducing preferences towards some tasks besides stimulus
has some impact on the performance of the colony (Momen, 2013).
Authors use a group of heterogeneous agents and a set of local rules to
communicate with neighboring agents for each group. Agents switch
between three tasks: foraging, brood caring and resting based on three
thresholds for foraging, brood caring and resting. The model brings
sufficient improvements but it is still very parameter dependent and
several initial parameters need to be adjusted for best results. Authors
in Pitonakova et al. (2014) compare simulated robotics swarm of
individualist foragers and a swarm of collective foragers. It was shown
that recruitment is useful when resources are hard to find, where
agents tend to signal to each other the location of deposits and return
home on beacons, they use odometry to recognize their location and
the food location. Robots need internal memory to store additional
information that helps them to react. In Lee et al. (2013) and Lee and
Ahn (2011), a honey-bee inspired model for foraging was proposed to
improve the energy efficiency by means of search space and labor
division. They employ temporary stores at fixed locations, robots need
to communicate directly the food location and use GPS to return
home. The approach was tested on small scale systems (25 to 40
robots). Two decentralized foraging algorithms that imitate swarm
behaviors using a limited number of robots were proposed in Chat-
tunyakit et al. (2013). In both algorithms, robots are equipped with
camera, infrared sensors, GPS and communication device. Each robot
has a positioning system installed to determine its current location.
Random motion is adopted by the two algorithms at first stages of
search and robots transmit at each step their current positions
between them. In Simonin et al. (2014), authors propose a Multi-Agent
Foraging algorithm. It is a parameter free, distributed and asynchro-
nous version of the wavefront algorithm (Barraquand et al., 1992).
Agents while exploring the environment build simultaneously paths
between food and the nest which results in computing a wavefront
from the agent destination which involves building an ascending
Artificial Potential Field (APF) incrementally. Due to the pseudo ran-
domwalk, paths are not optimal and agents need to visit the same cell
several times before the APF reaches its optimal value, which results in
large foraging times.

C-SAF presents multiple benefits in comparison to the reported
foraging works. The random walk used in most of the works as
search strategy provides large foraging time and non-optimal
Fig. 1. S-MASA coordination rules which represent the changing of heading from: (a) 180
already visited cells.
paths (Simonin et al., 2014). In our work, it is replaced with a
new search algorithm called S-MASA. S-MASA allow agents to:
(1) search quickly for food by allowing a large dispersion of agents
by avoiding already visited cells as much as possible, (2) the
vortex-like movements of agents allow building optimal paths by
constructing a wavefront expansion of pheromone. Comparing to
the related works, C-SAF is scalable, it could be used with large
number of agents and large environment sizes. Agents in C-SAF are
provided with very limited sensing (perceive the four neighboring
cells) and computational capabilities. They communicate indirectly
via pheromone and they need very small memory to store the
amount of remaining food, and no specific material is needed
(compasses for example). Agents return home by descending the
negative gradient of pheromone wavefront created when search-
ing (see Section 2.3). After food is located, agents attract each
other to the location using pheromone trails.

Table 1 presents the comparison of the surveyed works with
our algorithm C-SAF (Algo2) according to an extended taxonomy
based on the one in Winfield (2009). Each one of the four major
axis (environment, robot, strategy and performance) is characterized
by a set of properties in the minor axis which can take specific
values denoted in value axis in Table 1. Features of the environment
concern: search space which can be bounded or unbounded, source
areas that represent food locations which can be single or multi-
ple, object types of limited or unlimited amount of items which
take fixed or random positions (object placement) and a storage
point where food is returned (sinks). The robot is defined by: a
number of agents participating at the mission (single or multiple),
their type either homogenous which means similar in functions
and material or heterogeneous, the object sensing which is their
range of sensors (limited or unlimited), their ability to know the
current position (localization), their ability at exchanging infor-
mation with others (communication) and their possession of lim-
ited or unlimited stores of energy (power).

The strategy includes the different sub-strategies used in foraging
such as: search, grabbing, transport, and homing and if there exist
mechanisms of recruitment or coordination to improve the perfor-
mances. While in performance, we added in bold the different metrics
used in the works compared in Table 1, in addition to those that exist
in the reference taxonomy (Winfield, 2009).
3. Cooperative Switching Algorithm for Foraging (C-SAF)

The C-SAF Algorithm is a distributed Multi-Agent Foraging
algorithm that creates optimal paths from food to nest by only
depositing pheromone while searching. By using this algorithm,
° to 270°, (b) 270° to 0°, (c) 0° to 90°, (d) 90° to 180°, where white crosses represent

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319306
agents create simultaneously and synchronously a pheromone
wavefront expansion from the nest to the food (see Statement 3.1)
and can use the negative gradient to go back to nest (see
Statements 3.2 and 3.3). It increases the cooperation between
agents to transport food by diffusing pheromone when the food is
located. Each agent can switch from a state to another according to
surrounding events.

In particular the agent switches between several states: Look-for-
Food, Choose-Next-Patch, Pick-Food, Return-and-Color, Return-to-Nest,
At-Home, Climb and Remove-Trail. It starts with looking for food (Look-
for-Food state). If there is no food, it moves in its environment using
Choose-Next-Patch rules and deposits pheromones that evaporate with
time. It changes automatically to Look-for-Food state and, if there is
food, picks a quantity of it (Pick-Food state), and returns home by
following the colored trail, if there exists one (Return-to-Nest). If there
exists no trail, it diffuses the information to its neighbors by depositing
recruitment pheromone and creates a trail by depositing return
pheromone (Return-and-Color) while returning to home. When the
Table 1
A comparison of Multi-Agent Foraging algorithms based on the enhanced taxonomy. Alg
3 and 4).

Major axis Minor axis Value Simonin et al. (2014)

Environment search space constrained X
source areas single limited

single unlimited
multiple limited X

sinks single X
object types multiple static X
object placement fixed location

random X

Robot (s) number multiple X
type homogenous X

heterogeneous
object sensing limited X
localization non X

relative
communication direct

indirect X
power unlimited X

Strategy search random walk X
trail following X
follow other robots
in teams
S-MASA

grabbing single X
transport cooperative X

single
homing on beacon

direct trail information
follow trail X

recruitment direct
indirect X

coordination direct
indirect X

Performance time fixed
minimum
varying agent number X
varying environment size X
first time to find food

other metrics average hunger level
food found or not
rate of returned food
home is reached, it unloads the food (At-Home) and if the food is
exhausted it removes the existing trail (Remove-Trail), else it climbs the
trail to the food location (Climb). Fig. 2 shows the finite state machine
of our foraging agent whereas the complete algorithm is given in
Algorithm 2.

Statement 3.1. In a bounded 2D Grid environment (see Section 2.2),
a set of agents performing the C-SAF Algorithm builds food paths
when searching.

Proof. Let us define a food path as the set of cells free from obstacles
relaying nest to food. Let Wi be the set of cells corresponding to the
same cost (pheromone value). Several wavefronts exist W0…Wn,
where W0 is the initial wavefront, which corresponds to the starting
cell from where all agents start searching. An agent ai keeps moving
according to the strategy defined in Statement 2.2. At the first step,
agents move to reachable non-obstacle cells from W0 and depose a
pheromone creating the wavefront W1. At the second step, agents
move to reachable non-obstacle cells from W1 and depose a
o2, Algo3 and Algo5 are respectively C-SAF, NC-SAF, and NC-c-marking (see Sections

Momen (2013) Meng et al. (2012) Hoff et al. (2013) Algo 2 Algo 3 Algo 5

X X X X X X
X

X X
X X X

X X X X X X
X X X X X X
X X

X X X X

X X X X X X
X X X X

X X
X X X X X X

X X X X X
X
X X X

X X X X
X X X X X X

X X X X
X X X X X

X
X

X X
X X X X X X
X X X X

X X
X

X X
X X X X X

X
X X X X X
X X X

X X X

X X X
X

X X X
X X X

X
X

X
X X X

Algorithm 2. C-SAF Algorithm where pheromone is noted P.

if AT-HOME then
Unload food;
ifð(trail and food40Þthen goto CLIMB;

elseifð(trail and food¼ 0Þthen goto REMOVE�TRAIL;

else goto LOOK�FOR�FOOD;

66666664
if LOOK-FOR-FOOD then
ifðfood40Þthen goto PICK�FOOD;
else goto CHOOSE�NEXT�PATCH;

$

if CHOOSE-NEXT-PATCH then
if ðobstacle detectedÞthen Avoid_ObstacleðÞ;
else
ifðbrown P hereÞ and ðbrown P in right cellÞ then
⌊DiffuseðPÞ; move to food location using brown cells;
else
else
ifðbrown P hereÞ and ðnobrown P in right cellÞ then
⌊Remove brown trail;
else
LayðPÞ;
Detect_And_Adjust_HeadingðPÞ;
UpdateðPÞ;
MoveðÞ;

66666664

666666666666664

6666666666666666666666664

6666666666666666666666666666664
if PICK-FOOD then
Pick up a given amount of food;
Diffuse ℙð Þ;
if ∃ trailð Þthen goto RETURN�TO�NEST;
else goto RETURN�AND�COLOR;

66666664
if REMOVE-TRAIL then
while (no trail do
Move to neighboring colored cell with the greater value of P;

Update its color to the default one ðblackÞ;

$

goto LOOK�FOR�FOOD;

66666664
if CLIMB then
while (no trail do
⌊Move to neighboring colored cell with the greater value of P;
goto LOOK�FOR�FOOD;

66664
ifRETURN-TO-NEST then
while home not reached do
⌊Move to a colored neighboring cell with the lowest P value;
goto AT�HOME;

66664
if RETURN-AND-COLOR then
while home not reached then
Move to a neighboring cell with the lowest P value;
Color that cell to a specific trail color ðyellowÞ;

$

goto AT�HOME;

66666664

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 307
pheromone to create W2. Such process iterates from i to iþ1 until all
reachable non-obstacle cells have been reached. At each step agents
relay cells from Wi to cells in Wiþ1, thus from the starting cell (c0)
there exists a trail that leads to the goal cell (cgoal). As agents adopt a
vortex-like movements, they need to turn around each other in the
direction of non-visited cells in obstacle-free environments (or of the
visited cells in obstacle environments). Thus the built food paths are
non optimal.

Statement 3.2. In a bounded 2D Grid environment (see Section 2.2),
a set of agents performing the C-SAF Algorithm builds homing paths
by following the negative gradient created when searching (see
Statement 3.1).

Proof. Let us define a homing path as the set of cells free from
obstacles relaying food to nest. Let P be initial pheromone deposed by
an agent at time t0, and Pj its value after evaporation where j is the
number of evaporations that P had. At t1, agents move to all reachable
cells in one step from W0, depose P, thus create the wavefront W1. At
t2, agents move to non visited neighbors of W1, depose P in current
cells, thus create the wavefrontW2 at the same time values ofW1 take
the first evaporation P1 (P1oP). At t3, agents move to non visited
neighbors of W3, they take the value P, while values of W1 take their
second evaporation to get P2, and pheromones of W2 take their first
evaporation to get P1 where P2oP1oP corresponding to W1, W2

and W3 respectively. At each time ti, if there exists an obstacle then ai
keeps avoiding it in the direction of cxAEReachable until it encounters a
cxAENotVisited. This process iterates from i to iþ1 until all reachable
cells have been reached, agents can then follow the negative gradient
from the greatest P value to the lowest one (W0) to get home. The
homing paths are shorter than food paths since agents choose at each
step cells with the smallest P value in the four neighboring cells.

Statement 3.3. The homing paths built according to Statement 3.2
are optimal.

Proof. Optimality of the paths is considered with respect to the
path length or the distance in number of cells between nest and
food. We define an optimal path (shortest path) as the path with
the smallest number of cells relaying nest to food. The vortex-like
movements allow each agent ai at any time tj to get four different
neighbors: cright, cbackAEVisited and cfront, cleftAENotVisited reachable at
one step to the right, backward, forward and left directions
respectively. Let Pr be the pheromone in cright, Pb the pheromone
in cback and Px the pheromone in the current cell cx (cfront and cleft
do not contain pheromones since they are not yet visited), since
cback is visited at tj�1 and cright is visited at tj�n where n is the
number of steps between cright and the current cell (following the
principle of turns like vortex in movements). At tj when cx is
reached, ProPboPx because Pr evaporates n�p, Pb evaporates
1� p and Px does not evaporate yet (where n is the number of
steps between cright and cx and p is the evaporation rate).
According to this principle, when ai returns home, it chooses cx A
Evisited with the smallest P which is the cright cell, this process
iterates until home is reached, thus from a cell to another the
optimal cost is chosen, therefore optimal paths are created.

if P
P
if
e

66664
if (

RET

Look-for-Food

Return-to-Nest

Pick-Food

Choose-Next-Patch

Return-and-Color

At-Home

Home reached

Climb

Remove-Trail

Food

Trail

No Trail

No Food & Trail

Else

No Trail

No Trail

No Food

Food & Trail

Fig. 2. State diagram showing the possible states of a foraging agent in C-SAF and NC-SAF algorithms. Black circle is the initial state, white diamonds are decision points and
rectangles are states.

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319308
4. Related algorithms: a comparison

The C-SAF algorithm (Section 3) allow recruiting as much as
possible agents in trails to cooperate in exploitation of food. To
show that cooperation may improve the performance of the
individual agents or the overall behavior of the system, an in-
depth quantitative comparison between the C-SAF (Algorithm
2), NC-SAF (Algorithm 3), c-marking (Simonin et al., 2014)
(Algorithm 4) and NC-c-marking (Algorithm 5) is given in
Section 5.

The NC-SAF algorithm uses the state machine depicted by
Fig. 2 and the C-SAF set of behaviors. However, it does not
allow cooperation between agents to transport the food when
it is found. Instead, each found food is exploited and trans-
ported by its finder. The agent finder will not alert the other
agents to the food location, hence they proceed to the search
process rather than to the exploitation of the food collectively.
It uses the same state machine as C-SAF, with changes in the
Choose-Next-Patch state, where agents in this state do not
diffuse brown pheromone to attract other agents. This proce-
dure is used by the C-SAF algorithm to spread information to
alert the other agents to the food location in order to exploit it
collectively.

Algorithm 3. Variants of the NC-SAF Algorithm with respect to
the C-SAF Algorithm (see Algorithm 2), where pheromone is
denoted by P.
if C
i
⌊

e66666664

666666666666664
HOOSE-NEXT-PATCH then
f ðobstacle detectedÞ then
Avoid_ObstacleðÞ;
lse
LayðPÞ;
Detect_And_Adjust_HeadingðPÞ;
UpdateðPÞ;
MoveðÞ;
ICK-FOOD then
ick up a given amount of food;
∃ trailð Þ then goto RETURN�TO�NEST;

lse goto RETURN�AND�COLOR;
LOOK-FOR-FOOD or REMOVE-TRAIL or CLIMB or RETURN-TO-
NEST or
URN-AND-COLOR or AT-HOME) then
the same as in algorithm 2;
⌊do

The c-marking algorithm (Algorithm 4, Simonin et al., 2014) is
a parameter free foraging algorithm that is a distributed and
asynchronous version of the wavefront algorithm (Barraquand et
al., 1992). Agents while exploring the environment build simul-
taneously paths between food and the nest which results in
computing a wavefront from the agent destination which
involves building an ascending APF incrementally. Agents need to
visit the same cell several times before the APF reaches its opti-
mal value. A c-marking agent is always in one of the states
depicted by Fig. 3 showing its finite state machine. It always
starts from the state SEARCH & CLIMB TRAIL which is the default
state for all agents. Agents use random walk for search. When
food is located, an agent picks a given quantity and returns to
nest by using a trail if it exists or creating one if it does not exist,
by following the negative gradient. Other agents can be recruited
in existing trails. When the food is exhausted the last agent must
remove the trail.

NC-c-marking (Algorithm 5) is an alternative of c-marking algo-
rithm that does not allow cooperation to exploit the food, and so
there is no recruitment of agents in existing trails. Each agent which
found a food can create a trail and after that climb it to return to the
food and remove it at the end. The two algorithms use the same state
diagram depicted by Fig. 3, where the difference is in the states
SEARCH & CLIMB and RETURN AND COLOR TRAIL.

Algorithm 4. c-marking Algorithm (Simonin et al., 2014).

if SEARCH & CLIMB (Repeat) then
if food exist in neighboring cellð Þ then move into that cell; goto LOADING;
if there exists no colored neighboring cellð Þ then
jgoto EXPLORATION & APF CONSTRUCTION;
else if previous position was not a trail cellð Þ then
⌊Move to the highest valued colored neighboring cell;
else
⌊Move to a new cell with the current trail color;
goto UPDATE�VALUE;

666666666666666664
if EXPLORATION & APF CONSTRUCTION then
if ∃ neighboring cells without a valueð Þ then move randomly to one of them;

goto UPDATE�VALUE;
else move randomly to one of neighbors; goto UPDATE�VALUE;

66664
if UPDATE-VALUE then
Compute val¼ 1þminð4�neighborvaluesÞ;
Write val in the current cell if its different from the starting cell;

$

if LOADING then
Pick up a quantity Qmax of food;
if food is not exhaustedð Þ then if the cell is coloredð Þ then
jgoto RETURN�TO�BASE;
else
jgoto RETURN�AND�COLOR�TRAIL;
else goto RETURN�AND�REMOVE�TRAIL;

6666666666664
if RETURN-AND-COLOR-TRAIL then
Color the cell in a specific color;
goto UPDATE�VALUE;
if base reachedð Þ then Unload food;
goto SEARCH & CLIMB;
else move to a neighboring cell with the smallest value;

6666666664
if RETURN-AND-REMOVE-TRAIL then
if cell has the trail colorð Þthen remove this color and goto UPDATE�VALUE;
if base is reachedð Þ then Unload food;
goto SEARCH & CLIMB elseif there exists a neighboring cell with trail colorð Þ then
move to neighboring trail cell
else move to the smallest neighboring cell;

6666666664

SEARCH & CLIMB TRAILS LOADING

RETURN & COLOR TRAIL

RETURN TO BASE

RETURN & REMOVE TRAILUNLOADING

Food

Food & No TrailNo Food & Trail

Food & Trail

 OR

No Food & No Trail

Base Reached

Base Reached

Fig. 3. State diagram showing the possible states of a foraging agent in c-marking (Simonin et al., 2014) and in NC-c-marking algorithms. Black circle is the entry point, white
circle is a decision point and rectangles are states.

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 309

Fig. 4. World setups used in simulations: (a) Obstacle-free environment; (b) Obstacle environment, where arrows are agents, the white cell in the center is the nest, the
white circles are food and the gray clusters are obstacles; (c), (d), (e) and (f) present C-SAF execution samples at different stages where Laden agents are in the middle line,
and Walker agents spread themselves diagonally on sides, with respectively 1 and 2 food locations.

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319310
Algorithm 5. Variants of the NC-c-marking Algorithm with
respect to the c-marking Algorithm (see Algorithm 4).
if S
i66664
i����������
e

66666666666666666666664
if R
c
m
if
g
e

6666666664
if (

RET
EARCH & CLIMB (Repeat) then
f ðfood exist in neighboring cellÞ then
move into that cell; update marker to true;
goto LOADING

f marker true then
if there exists a colored cell with great value then
jmove to it
else
⌊goto EXPLORATION & APF CONSTRUCTION

lse goto EXPLORATION & APF CONSTRUCTION;
ETURN-AND-COLOR-TRAIL then
olor the cell in a specific color; goto UPDATE�VALUE;
emorize the last step before the base cell;
base reachedð Þ then Unload food;

oto SEARCH & CLIMB;
lse move to a neighboring cell with the smallest value;
EXPLORATION & APF CONSTRUCTION or UPDATE-VALUE or
LOADING or
URN-AND-REMOVE-TRAIL) then
the same as in algorithm 4;
⌊do
5. Performance evaluation

In this section, we present a description of the proposed fora-
ging Framework in Section 5.1 and evaluate the performance of
the four algorithms (C-SAF, NC-SAF, c-marking and NC-c-marking)
in obstacle-free and obstacle environments. We present, in Section
5.2, the simulation parameters and the performance indices used
to evaluate the algorithms. In Section 5.3, we describe four fun-
damental scenarios that are used for simulations, and report the
importance and the benefits of such scenarios in understanding
and comparing the algorithms. In the final Section 5.4, we present,
discuss and compare the obtained results by the different algo-
rithms in the four scenarios.
5.1. A simulation framework for Multi-Agent Foraging

The algorithms C-SAF, NC-SAF, c-marking and NC-c-marking
have been implemented through our framework for Multi-Agent
Foraging. The framework is composed of several components: the
search world which is a set of cells modeled as stationary agents on
which the actors of simulation are deployed, the food modeled as
stationary agent with a fixed position and limited amount which
can be exploited by foragers, obstacles and nest which take place at
fixed positions, foragers are modeled as mobile agents that search
for food using a searching algorithm (e.g. the S-MASA algorithm
Zedadra et al., 2014, see Section 2.3) and transport it, when found,
to home while depositing pheromones and behavior which
includes a specific foraging algorithm (e.g. Algorithms 2–5).
The framework is designed to be extensible as the definition of
each object is independent from the others, and it can be reused in
other foraging algorithms. It is also flexible as new algorithms or
even behaviors can be defined and seamlessly used; hence,
developers of other foraging algorithms can add new classes,
remove classes which are not important in their systems, or
modify existing methods (the move method of an agent for
example), or even add other states (such as recharging to take into
account energy-aware behaviors), that can be directly defined in
the behavior class.

Table 2
Parameters of Scenarios 1, 2, 3, and 4.

Parameter Value

Scenario 1 Average time analysis
World size 100�100 – 1200�1200 cells
Number of agents 1–10000
Food density 1–10 sites
Food concentration 500–1500 units
Agent's capacity 1–100 units

Scenario 2 Returned food analysis
World size 1000�1000 cells
Number of agents 800
Food density 1 site
Food concentration 500 units
Agent's capacity 1 unit

Scenario 3 Path length analysis
World size 800�800 cells
Number of agents 1–1000
Food density 1 site
Food concentration 500 units
Agent's capacity 1 unit

Scenario 4 Scalability analysis
World size 100�100 – 1200�1200 cells
Number of agents 50–10000
Food density 1 site
Food concentration 500–1500 units
Agent's capacity 1–10 units

Table 3
Definition of the terms used in the results tables and figures.

Term Definition

Obstacle-free world (free) Results in obstacle-free environment for the four
algorithms

Obstacle world (obs) Results in obstacle environment for the four
algorithms

C-SAF Results for Cooperative Switching Algorithm for
Foraging

NC-SAF Results for non-cooperative version of C-SAF
c-marking Results for c-marking algorithm
NC-c-marking Results for the non-cooperative version of c-marking

algorithm
STD-DEV Standard deviation of obtained results

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 311
The framework is currently implemented in Netlogo (Wilensky,
1999), which is a multi-agent programmable modeling environ-
ment that allows us to rapidly prototype systems of situated
agents evolving in a two dimensions world. It provides a
sequential synchronization of execution where each agent must
finish all the commands in the block before the next agent starts
and the order in which agents are chosen to run the commands is
random. Simulations are performed within a grid environment
where cells can be either empty or occupied by food, agent,
obstacle or the nest. The position of obstacles is fixed for all
simulations in order to exclude its impact on the multi-agent
system performance. The Multi-Agent Foraging framework which is
notably platform-independent, is translated into a Netlogo
platform-specific model and implementation. In Netlogo, each
Forager is modeled as a Turtle having the ability to update infor-
mation of neighboring or current cells when needed (such as
depositing pheromones). Foragers communicate indirectly
through their world. Communication is modeled directly in the
behavior procedure. Agent behavior is modeled as procedures
which can be called from any other procedure. World is modeled
as a set of Patches (immobile agents) disposed on grid. Foragers,
food, obstacles and nest are placed on the world patches. Food is
modeled as a set of Patches which can take place at some positions
on world patches.

Even though, in this paper, we implemented the Multi-Agent
Foraging simulation framework in Netlogo, the framework can be
easily ported onto other agent-based simulator (or general-
purpose simulation environment) such as Repast (Collier, 2003),
and ELDASim (Fortino and Russo, 2012).

5.2. Simulation parameters and performance indices

The two world setups (obstacle-free and obstacle environ-
ments), which are used for simulations, including positions of nest,
food, obstacles and agents, are reported in Fig. 4. There are several
simulation parameters that must be properly set: (i) the World size
is the dimension of the search space, it is a grid of N�N cells; (ii)
the Food density is the number of food locations (sites), each site
contains a limited amount of food. These locations take fixed
positions in the environment; (iii) the Food concentration indicates
the amount of food that each site contains (we refer to it as unit in
the paper); (iv) the Agent's capacity is the amount of food (units)
that an agent can transport at each time; (v) the Agent's number is
the number of agents that participate in each simulation.

To evaluate the performance of the C-SAF algorithm and the
other algorithms, three performance indices have been defined:

� Average Foraging Time – The amount of time in seconds needed
to finish the foraging mission. It is when all the food sites are
discovered and exhausted.

� Total Food Returned – The total amount of food returned to the
nest by all the agents until a given foraging time.

� Average Path Length – Represents the path length between food
and the nest, measured as number of cells that form the path.

5.3. Simulation scenarios

Simulations are based on the Netlogo-based Multi-Agent
Foraging simulation framework (see Section 5.1). Each simulation
is repeated 50 times in the four scenarios. The average value is
then calculated from the 50 trials for each scenario. Four funda-
mental scenarios are used to test the performance of the algo-
rithms (see Table 2):

� Scenario 1 is set up to test which of the parameters presented in
Section 5.2 can affect the average foraging time. It entails four
subscenarios. Subscenario 1 is designed to analyze the impact of
the Agent number on foraging time. Achieving the foraging task
can be very time consuming. Using ticks does not reflect the real
time needed to accomplish the task, thus it will be difficult to
show the gain of the proposed algorithms in according to
computation time. To show the main differences when using
each of the two units (virtual ticks and real seconds), we
analyzed the average foraging time in subscenario 1 through
both ticks and seconds. Subscenario 2 is to test how World size
can affect the average foraging time and if there is any minimal
size under which a number of agents can carry efficiently the
foraging task. In order to identify whether or not distributing on
single or multiple food locations is beneficial, we used sub-
scenario 3 where we varied the Food density from 1 to 10. To test
the effect of increasing the capacity of agents, we defined
subscenario 4 in which the capacity is varying from 1 to
100 units.

� Scenario 2 is defined to show the evolution pattern of returned
food over time for each of the four algorithms in obstacle-free
and obstacle environments.

� Scenario 3 is designed to study the effect of the agent number
on the Path length, whether or not using more agents will
reduce the path length.

Table 4
Average foraging time in ticks and seconds when varying agent number.

Agent number 1 10 100 300 500 5000 10000

Obstacle-free world- Time in ticks
C-SAF 16029 1713 316 226 200 210 219
STD-DEV 0,1 5,2 3 0,4 0,4 0,9 0,4
NC-SAF 16029 12771 12451 12451 12451 12451 12451
STD-DEV 0,1 0,2 3 0 0 0 0
c-marking 4221763 26205 1232 723 953 454 414
STD-DEV 1020 1320 250 71 45 0,8 50
NC-c-marking 3657570 46122 21428 18676 18076 18144 18157
STD-DEV 1520 456 455 81 31 49 44

Obstacle-free world- Time in seconds
C-SAF 65210 8569 1677 1206 1038 1086 1482
STD-DEV 5,1 1,2 1,5 5 2 3 5
NC-SAF 65210 62224 54735 40215 40019 40451 42719
STD-DEV 2,3 1,2 1,6 2 2 4 2
c-marking 95320 35799 7672 4309 4385 1373 1509
STD-DEV 1120 920 620 820 670 85 16
NC-c-marking 100345 100251 65300 61764 54517 55322 52906
STD-DEV 620 850 540 702 450 42 23

Obstacle world- Time in ticks
C-SAF 16069 1753 356 266 240 250 259
STD-DEV 0,1 1,3 3 0,47 0,47 0,9 0,47
NC-SAF 16069 12811 12491 12491 12491 12491 12491
STD-DEV 0,1 3,2 5 0 0 0 0
c-marking 4221833 26275 1302 793 1023 524 484
STD-DEV 1310 520 321 41 15 20 20
NC-c-marking 3657615 46167 21473 18721 18121 18189 18202
STD-DEV 1120 890 530 61 11 29 24

Obstacle world- Time in seconds
C-SAF 65312 8671 1779 1308 1140 1188 1584
STD-DEV 2,2 1,2 1,3 5 2 4 4
NC-SAF 65312 62327 54837 40317 40121 40553 42821
STD-DEV 3,2 1,3 1,2 4 4 8 3
c-marking 95721 36201 8073 4710 4786 1774 1910
STD-DEV 1359 1320 520 620 420 120 105
NC-c-marking 100540 100652 65701 62165 54918 55724 53307
STD-DEV 1020 985 545 423 145 12 16

 3 ⋅10 3

 8 ⋅10 3

 4 ⋅10 4
 7 ⋅10 4
 1 ⋅10 5

 1 5 10 25 50 100 300 10000

A
ve

ra
ge

 F
or

ag
in

g
Ti

m
e

(s
ec

)

Agents Number

 5 ⋅10 2

 2 ⋅10 3

 1 ⋅10 4
 2 ⋅10 4

 4 ⋅10 6

 1 5 10 25 50 100 300 10000

A
ve

ra
ge

 F
or

ag
in

g
Ti

m
e

(T
ic

ks
)

Agents Number

C-SAF free
C-SAF obs

NC-SAF free
NC-SAF obs

c-marking free
c-marking obs

NC-c-marking free
NC-c-marking obs

Fig. 5. Average foraging time when varying the agent number: (a) Average foraging time measured in seconds, (b) Average foraging time measured in ticks, where the legend
in (b) is the same as in (a).

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319312
� Scenario 4 is proposed to test the scalability of the algorithms
and to analyze how much and in which way agent density
variation can affect performances.

5.4. Performance and comparison of cooperative and non-
cooperative algorithms

Here we show the results of C-SAF, operating in obstacle-free and
obstacle environments, and compare it with NC-SAF, c-marking and
NC-c-marking algorithms. We fixed the position of food and obstacles
in all simulations to exclude their impact on performances. Table 3
defines terms used in tables and figures about performance evalua-
tion results.

5.4.1. Average time analysis (Scenario 1 results)
We first present in this section the performance of the four

algorithms as the number of agents grows where the average
foraging time is measured in seconds and in ticks respectively (see

Table 5
Average foraging time (sec) when varying world size.

World size 100�100 200�200 800�800 1000�1000

Obstacle-free world
C-SAF 46 92 999 1355
STD-DEV 3 6 8 5
NC-SAF 1161 3881 60620 95975
STD-DEV 4 5 5 9
c-marking 52 118 1569 1803
STD-DEV 8 24 349 578
NC-c-marking 2389 3860 100634 131428
STD-DEV 2 5 234 845

Obstacle world
C-SAF 149 195 1101 1458
STD-DEV 2 7 9 7
NC-SAF 1264 3984 60722 96077
STD-DEV 8 6 9 9
c-marking 454 519 1970 2204
STD-DEV 5 19 344 720
NC-c-marking 2790 4261 101036 131830
STD-DEV 2 9 533 734

Table 6
Average foraging time (sec) when varying agent capacity.

Agent capacity 1 10 50 100

Obstacle-free world
C-SAF 852 330 214 197
STD-DEV 4 1 4 2
NC-SAF 121941 6165 1490 792
STD-DEV 5 4 3 1
c-marking 1130 692 490 569
STD-DEV 230 123 144 132
NC-c-marking 132554 10313 2639 1272
STD-DEV 430 223 149 102

Obstacle world
C-SAF 954 433 316 299
STD-DEV 4 3 1 1
NC-SAF 122043 6267 1592 894
STD-DEV 8 6 9 9
c-marking 1532 1093 892 970
STD-DEV 355 520 431 455
NC-c-marking 132955 10714 3040 1673
STD-DEV 355 320 231 355

 46
 195

 1161
 3984

 101036

 100 200 800 1000

A
ve

ra
ge

 F
or

ag
in

g
tim

e
(s

ec
)

World Size

 214
 954

 132955

 1 10 50 100

A
ve

ra
ge

 F
or

ag
in

g
tim

e
(s

ec
)

Agent Capacity

C-SAF free
C-SAF obs

NC-SAF free
NC-SAF obs

c-marking free
c-marking obs

NC-c-marking free
NC-c-marking obs

 723
 1317
 2521

 172332

 1 4 8 10

A
ve

ra
ge

 F
or

ag
in

g
tim

e
(s

ec
)

Food Density

Fig. 6. Results of scenario 1 when varying: (a) world size, (b) agent capacity and (c) food density.

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 313
Table 4 and Fig. 6, results are obtained by fixing the other simu-
lation parameters as follows: world size¼1200�1200 cells, food
density¼1, food concentration¼1500 units, agent capacity¼10
units, nest number¼1). The algorithm was first evaluated with
small number of agents (1, 5, 10, 25 and 50) and then this number
was progressively increased to reach 10000. While the foraging
time increases faster as the number of agents increases from 1 to
500. It is higher with 1 agent (65210 s), halved with 5 agents
(35796 s) and even reduced more with 10 and 25 agents (8569 s
and 3916 s respectively). It is halved from 50 to 300 and reduced
considerably from 300 to 500. Above 500 agents, the foraging time
decreases slower progressively until it reaches 1482 s, in obstacle-
free environment, and 1584 s, in obstacle environment, with
10000 agents. Between 5000 and 10000 agents, in C-SAF there is a
slight increase of the foraging time; this happens only when using
one food location (as in this case) as it is related to the length of
search path that agents need to traverse to get to the food location
(Fig. 4(c) and (d) shows an example of execution of such a case).
Conversely, when we used multiple food locations (see Fig. 4
(e) and (f)), the foraging time keeps decreasing as also subscenario
4 (see below) will confirm. In c-marking algorithms, foraging time
becomes faster as the number of agents increases. However, if the
food position is out of the wavefront expansion the pseudo ran-
dom walk can slow down the search task, thus the foraging time.
Foraging time in non-cooperative protocols is very high compared
to the cooperative ones, however, NC-SAF give better results than
the c-marking one when the number of agents is low (1 and
5 agents) because in c-marking algorithm the wavefront created

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319314
with a low number of agents is small and the agents take much
more time in search. The C-SAF algorithm gives better results than
the other three cooperative and the non-cooperative protocols; it
is much faster (up to 4 times more) than the c-marking algorithm;
in fact, while C-SAF obtains its best performance with 500 agents
(1140 s, in obstacle environment), c-marking obtains its best per-
formance with 5000 agents (1744 s). This implies that C-SAF not
only outperforms c-marking in terms of foraging time but also it
would save a lot of resources so allowing for practical feasibility of
the approach. The standard deviation is smaller in C-SAF algo-
rithms and higher in c-marking algorithms where it decreases
when increasing the number of agents. Results in obstacle envir-
onments are higher than in obstacle-free ones in the four proto-
cols. Curves obtained in the four algorithms show similar trends
when using seconds (Fig. 5(a)) or when considering ticks (Fig. 5
(b)). However, to reconcile the results to those that can be
obtained in the real world, we use only seconds as measurement
unit for the average foraging time in the other scenarios.

In Table 5 and Fig. 6(a), we can observe that foraging time is
almost linear with respect to the growth of the world size in the
four protocols. Results are obtained by fixing the other simulation
parameters as follows: agent number¼800, food density¼1, food
concentration¼500 units, agent capacity¼1 unit, nest number¼1.
Table 7
Average foraging time (sec) when varying food density.

Food density 1 4 8 10

Obstacle-free world
C-SAF 1580 1420 1002 723
STD-DEV 2 1 2 1
NC-SAF 141931 60965 31452 14842
STD-DEV 8 3 3 2
c-marking 2350 2120 1317 1205
STD-DEV 230 103 94 21
NC-c-marking 171931 98210 40895 25122
STD-DEV 630 223 143 102

Obstacle world
C-SAF 1682 1522 1104 825
STD-DEV 2 2 3 1
NC-SAF 142033 61068 31554 14944
STD-DEV 10 2 3 3
c-marking 2751 2521 1718 1606
STD-DEV 355 250,1 91,8 30
NC-c-marking 172332 98612 41297 25523
STD-DEV 730 323 103 95

Table 8
Returned food over time until the foraging completion for all the four algorithms.

Time 500 1355 1450 1803

Obstacle-free world
C-SAF 41 500 500 500
STD-DEV 1 1 0 0
NC-SAF 2 5 6 8
STD-DEV 2,5 1,5 0 0
c-marking 0 194 251 500
STD-DEV 0 2 2 35
NC-c-marking 0 2 2 3
STD-DEV 0 0,7 0,7 1

Obstacle world
C-SAF 35 367 500 500
STD-DEV 1 2 1 0
NC-SAF 0 0 1 2
STD-DEV 0 1 1 2
c-marking 0 180 241 489
STD-DEV 0 3 3 23
NC-c-marking 0 0 0 1
STD-DEV 0 0 0 0,7
World size can slow down the foraging time in C-SAF algorithm if
it cannot contain a large number of agents, so reducing agent
cooperation in food transportation. In the c-marking algorithm,
when increasing the world size and the number of agents is not
sufficient to sustain the wavefront expansion, the paths are not
optimal and the foraging time increases. However, in this scenario
the number of agents is sufficient to create the wavefront to food
so helping at reducing foraging time. The non-cooperative proto-
cols provide very high foraging time in comparison to the coop-
erative ones and C-SAF provides the smallest foraging time in all
world configurations. Standard deviation is smaller in C-SAF pro-
tocols and increases in c-marking protocols from smaller to higher
values because of the random walk. Results in obstacle environ-
ments are higher than in obstacle-free environments.

Increasing the agent capacity helps at reducing the average
foraging time in the four algorithms (see Table 6 and Fig. 6(b),
results are obtained by fixing the other simulation parameters as
follows: world size¼800�800 cells, agent number¼500, food
density¼1, food concentration¼500 units, nest number¼1).
However, C-SAF algorithm takes much less average time to finish
the foraging regarding the other three algorithms. The average
time for c-marking agents is better than the one obtainable with
the non-cooperative algorithms, NC-SAF and NC-c-marking, but it
is much worse compared to C-SAF. The time decreases due to the
reduction in the number of turns needed to transport all the food
(e.g. agents need 10 turns to transport 10 units when capacity is 1,
but they need 1 turn when capacity is 10 units).

Finally, in subscenario 4 (Table 7 and Fig. 6(c), results are
obtained by fixing the other simulation parameters as follows:
world size¼1000�1000 cells, agent number¼500, food con-
centration¼500 units, agent capacity¼1 unit, nest number¼1),
we varied food density from 1 to 10, which means that we got
multiple food locations and the total amount of food is distributed
among them. The average foraging time decreases as the food
density increases until it is halved in C-SAF and c-marking. How-
ever, the average time increases dramatically when the food
locations are far away from the nest, especially in c-marking
algorithms where the paths are too long and non optimal. Simi-
lar performance results are obtained in obstacle environment,
with additional time needed to avoid obstacles.

5.4.2. Returned food analysis (Scenario 2 results)
C-SAF algorithm has a very fast time to locate and exhaust all

the food (1355 s in obstacle-free environment), which is not the
2035 95,975 96,345 131,428 152,412

500 500 500 500 500
0 0 0 0 0
9 500 500 500 500
0 0 0 0 0
500 500 500 500 500
0 0 0 0 0
4 335 336 500 500
2 3 7 1 0

500 500 500 500 500
0 0 0 0 0
4 466 500 500 500
1 2 1 0 0
500 500 500 500 500
13 0 0 0 0
2 331 332 493 500
0,7 10 4 16 1

 0

 100

 200

 300

 400

 500

 600

 5
00

 1
35

5

 1
31

42
8

To
ta

l F
oo

d
R

et
ur

ne
d

Time (sec)

 90

 100

 110

 120

 130

 140

 150

 160

 170

 1
00

 3
00

 8
00

 1
00

0

Pa
th

 le
ng

th

Agent Number

Fig. 7. (a) Returned food analysis; (b) Path length analysis. The legend in (a) is the same as in (b).

 1086

 2683

 4786

 43851
 54918

 0.0003 0.003 0.006

A
ve

ra
ge

 F
or

ag
in

g
tim

e
(s

ec
)

Agent Density

C-SAF free
C-SAF obs

NC-SAF free
NC-SAF obs

c-marking free
c-marking obs

NC-c-marking free
NC-c-marking obs

 46
 118

 519

 3881

 101036

 0.0008 0.02 0.08

A
ve

ra
ge

 F
or

ag
in

g
tim

e
(s

ec
)

Agent Density

Fig. 8. Scalability analysis: (a) increasing agent density by fixing world size and varying agent number; (b) decreasing agent density by fixing agent number and varying
world size. The legend in (b) is the same as in (a).

Table 9
Average path length when varying agent number.

Agent number 10 50 100 300 800 1000

Obstacle-free world
C-SAF 100 100 100 100 100 100
STD-DEV 0 0 0 0 0 0
NC-SAF 100 100 100 100 100 100
STD-DEV 0 0 0 0 0 0
c-marking 147 136 124 112 100 100
STD-DEV 5 4 3 0,7 1 1
NC-c-marking 154 143 130 115 100
STD-DEV 5 5 4 3 1 2

Obstacle world
C-SAF 100 100 100 100 100 100
STD-DEV 0 0 0 0 0 0
NC-SAF 100 100 100 100 100 100
STD-DEV 0 0 0 0 0 0
c-marking 165 145 133 119 112 100
STD-DEV 3 3 5 4 0,7 2
NC-c-marking 164 153 140 125 110 100
STD-DEV 4 3 4 5 1 1

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 315
case for the non-cooperative protocols that take about 95975 and
131428 s (NC-SAF and NC-c-marking in obstacle-free environment,
respectively). C-SAF retains higher performance than c-marking:
about 500 s better. In this scenario, we reported a sample of the
total amount of food returned overtime without the analysis of the
parameters that can affect its evolution. However, this scenario is
very much related to Scenario 1 and, for all the test configurations
of Scenario 1, we had the same performance profile for the four
protocols. Table 8 and Fig. 7(a), show the results obtained by the
four algorithms in obstacle-free and obstacle environments
(results are obtained by fixing the other simulation parameters as
follows: world size¼1000�1000 cells, agent number¼800, agent
capacity¼1 unit, food density¼1, food concentration¼500 units,
nest number¼1).

5.4.3. Path length analysis (Scenario 3 results)
Regardless of the number of agents, C-SAF and NC-SAF proto-

cols produce optimal paths (with 100 cells length) simultaneously
when exploring their environment. In c-marking algorithms, the
path length is non optimal and decreases when increasing the
number of agents until it reaches the optimal value with 800
agents in obstacle-free environment (1000 agents in obstacle
environment) (see Table 9 and Fig. 7(b), results are obtained by
fixing the other simulation parameters as follows: world
size¼800�800 cells, agent capacity¼1 unit, food density¼1,
food concentration¼500 units, nest number¼1). It is worth not-
ing that agents in the c-marking algorithm need to visit the same

Table 10
Scalability analysis: increasing agent density by fixing world size and varying agent number.

Agent density 0.00003 0.0002 0.0003 0.003 0.006
Agent number 50 300 500 5000 10,000
World size 1200�1200 1200�1200 1200�1200 1200�1200 1200�1200

Obstacle-free world
C-SAF 2580 1206 1038 1086 1482
STD-DEV 4 5 2 3 5
NC-SAF 60302 40215 40019 40451 42719
STD-DEV 4 2 2 4 2
c-marking 8142 4309 4385 1373 1509
STD-DEV 1160 820 670 85 16
NC-c-marking 68900 61764 54517 55322 52906
STD-DEV 1050 702 450 42 23

Obstacle world
C-SAF 2683 1308 1140 1188 1584
STD-DEV 5 5 2 4 4
NC-SAF 60404 40317 40121 40553 42821
STD-DEV 4 4 4 8 3
c-marking 8544 4710 4786 1774 1910
STD-DEV 1220 620 420 120 105
NC-c-marking 69302 62165 54918 55724 53307
STD-DEV 789 423 145 12 16

Table 11
Scalability analysis: decreasing agent density by fixing agent number and varying
world size.

Agent density 0.08 0.02 0.001 0.0008
World size 100�100 200�200 800�800 1000�1000
Agent number 800 800 800 800

Obstacle-free world
C-SAF 46 92 999 1355
STD-DEV 3 6 8 5
NC-SAF 1161 3881 60620 95975
STD-DEV 4 5 5 9
c-marking 52 118 1569 1803
STD-DEV 8 24 349 578
NC-c-marking 2389 3860 100634 131428
STD-DEV 2 5 234 845

Obstacle world
C-SAF 149 195 1101 1458
STD-DEV 2 7 9 7
NC-SAF 1264 3984 60722 96077
STD-DEV 8 6 9 9
c-marking 454 519 1970 2204
STD-DEV 5 19 344 720
NC-c-marking 2790 4261 101036 131830
STD-DEV 2 9 533 734

Table 12
Comparison highlights of the most important results between C-SAF and the other
algorithms in obstacle environment.

Algorithms Performance indices

Foraging
time

Returned
food

Path length Scalability

C-SAF 1140 s with
500 agents

500 units
in 1450 s

100 cells with
10 agents

2683 s with low
density¼3E�6;
149 s with high
density¼8E�2;

c-marking 1774 s with
5000 agents,
equals to
C-SAF with
200

500 units
in 2035 s
241 units
in 1450 s

100 cells with
1000 agents;
165 cells with
10 agents

8544 s with low
density¼3E�6;
454 s with high
density¼8E�2;

NC-SAF 40,121 s with
500 agents

500 units
in 96,345 s
1 unit in
1450 s

100 cells with
10 agents

60,404 s with low
density¼3E�6;
1264 s with high
density¼8E�2;

NC-c-
marking

53,307 s with
10,000 agents

500 units
152,412 s
0 unit in
1450 s

100 cells 1000
agents; 164
cells with 10
agents

69,302 s with low
density¼3E�6;
2790 s with high
density¼8E�2;

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319316
cell several times to get to its optimal APF value. The position of
the food can affect the path length: it will be shorter if food is close
to nest and longer otherwise. However, in c-marking algorithms
the number of agents, world size, food position and pseudo ran-
dom walk can affect the path length. Results obtained with C-SAF
and NC-SAF in obstacle-free and obstacle environment are very
close and their curves overlap in Fig. 7(b).

5.4.4. Scalability analysis (Scenario 4 results)
In this section, we analyze the scalability of the proposed

algorithm through two subscenarios on the basis of the Agent
Density, defined as Agent Number divided by World Size:
(1) increasing the agent density from 0.00003 to 0.006, by varying
the agent number and fixing the world size; (2) decreasing the
agent density from 0.08 to 0.0008, by fixing the agent number and
varying the world size. With reference to subscenario 1, results are
shown in Table 10 and Fig. 9(a). In the C-SAF case, the foraging
time quickly decreases with the increase of agent density until
0.0003 value; from such value, the foraging time starts increasing
slightly. A similar trend happens for the c-marking algorithm even
though with worse performances. The main reason for this is the
long path that agents need to traverse to reach the food location.

In subscenario 4 of Scenario 1 (see Section 5.4.1), we showed
that using multiple food locations helps at halving the average
foraging time, thus avoiding the limitation in scalability when
increasing too much the agent density. Regarding subscenario 2,
the obtained results are shown in Table 11 and Fig. 8(b). Here we
can see that time increases with the decrease of the agent density:
it is proportional to the growth of the world size. Obviously,
increasing the world size requires more time for exploration and
transportation of food. In such scenario, the other simulation
parameters are set as follows: agent capacity¼10 units, food
density¼1, food concentration¼500 units, nest number¼1.

5.4.5. Summary of results
In the four different analyzed scenarios (average time, returned

food, path length, and scalability analysis), we have shown that C-
SAF algorithm outperforms the considered cooperative (c-

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 317
marking) and non cooperative (NC-SAF and NC-c-marking) algo-
rithms. In Table 12, we report a summary of the comparison
between C-SAF and the other algorithms, highlighting the most
important performance differences in the four analyzed scenarios.
In particular, C-SAF provides on average less time and resources (in
terms of number of agents) to finish the foraging task (see first
column of Table 12), larger amount of returned food at a given
time (see second column of Table 12), and optimal paths (see third
column of Table 12). The differences between C-SAF and the other
algorithms mainly stems from the more rapid exploration of the
environment and the more rapid transportation of food to the
nest. Concerning space exploration, our agents use the S-MASA
algorithm (see Section 2.3) that, based on a guided search to non-
visited cells in vortex-like movements, provides both a large dis-
persion, therefore a quicker search, and optimal paths to return
home. Regarding food transportation, C-SAF agents depose pher-
omone to attract other agents in vicinity when a food is found and,
due to the vortex-like movements, a large number of agents can be
recruited and cooperate to transport the food to the nest, thus
accelerating the exploitation task. Moreover, the C-SAF algorithm
has also shown a good scalability (see forth column of Table 12).
6. Toward a robotic implementation

Stigmergic communications via pheromone trails have shown
to efficiently coordinate a team of robots and to allow them to
quickly explore a given terrain (Beckers et al., 1994; Svennebring
and Koenig, 2004). Most of the works on stigmergic coordination
are based on unrealistic assumptions (Kuyucu et al., 2012). This
kind of assumptions can help in analyzing and improving
pheromone-based algorithms in simulations before their real
robotic implementation. One of the key difficulties in the real
development of such mechanisms is the implementation of the
pheromone itself and how it can interact with agents. To date,
several techniques for virtual marking have been proposed.

� Robots can mark physically their trail via physical marks using:
alcohol (Sharpe and Webb, 1998), virtual marks (Svennebring
and Koenig, 2004) or RFID tags (Mamei and Zambonelli, 2005).

� Robots communicate a pheromone model using wireless net-
work (Vaughan et al., 2000).

� Robots transmit virtual pheromone using infrared commu-
nication (Payton et al., 2001).

� Robots can switch to beacons or even use immobile beacons to
communicate pheromone like information (Barth, 2003).

Despite the proposed approaches, the implementation of
pheromone is still in its early stages and most of the works are
available in research laboratories. One of the works that we believe
it constitutes an important way to the real implementation of our
approach is the one in Ranjbar-Sahraei et al. (2012), where pher-
omone is defined as an electrical marker that can be placed at
given positions in the environment, it can fully evaporate after
time. From a theoretical point of view, two changes can take place.
First, the robots should take specific initial locations on the four
headings (0°, 90°, 180°, 270°) in order to avoid the bottleneck
situation around the nest. Second, additional approaches to avoid
collisions between robots when using the same homing trail are
needed (e.g. leaving the trail for Laden robots). A case study that
we plan to consider in the future, is deploying a group of mobile
robots, based on a pheromone mechanism similar to the one
proposed in Ranjbar-Sahraei et al. (2012), which can perform tasks
such as searching for objects. We intend to use the agent pro-
gramming methodologies and tools from Fortino et al. (2015) and
Fortino and Russo (2012), to perform a rapid prototyping of our
approach in the PROFETA language (Fortino et al., 2013) in order to
investigate which design and implementation choices are required
before the real implementation.
7. Conclusion

In this paper, we have presented a distributed foraging algo-
rithm called C-SAF. C-SAF agents are simple, reactive, with small
memory and limited perception capabilities. They communicate by
depositing pheromone, i.e. stigmergic communications. We have
also presented a flexible simulation framework for Multi-Agent
Foraging that can be reused and/or extended to address the needs
of other foraging algorithms.

Four fundamental scenarios have been modeled and simulated
to test the effect of the basic parameters (agent number, world
size, food density, food concentration, agent capacity) on the
performances of the four cooperative and non-cooperative algo-
rithms (C-SAF, NC-SAF, c-markimg and NC-c-marking) in terms of
the defined performance indices, i.e. average foraging time,
amount of returned food and average path length. In the first
scenario, we have varied the basic parameters to test their effect
on the average foraging time measured in real seconds; in the
second scenario, we have shown the evolution pattern of returned
food over time; in the third scenario, we varied the number of
agents to observe its impact on the length of created paths; finally
in the fourth scenario, we analyzed the scalability of the algorithm
when varying agent density. In all the four scenarios, the C-SAF
provided the best results in terms of average foraging time, total
amount of returned food and average path length, both in
obstacle-free and obstacle environments. The average foraging
time was up to 4 times less than the one obtainable by the c-
marking algorithm which is a main reference in the literature.
Moreover simulation results demonstrate the benefit of coopera-
tion in Multi-Agent Foraging when the team of agents is efficiently
coordinated.

The C-SAF outperforms the c-marking one in three funda-
mental points: (1) the quick search provided by the S-MASA
algorithm, (2) the optimal homing paths created simultaneously
and synchronously while exploring and, (3) the high level of
cooperation to exploit and transport food by diffusing pheromone
to neighboring cells. But of course the C-SAF algorithm has some
degradation in performances in some cases: (1) the presence of
obstacles with complex shape, (2) when food is close to bound-
aries a small number of agents will contribute to transport because
most of them already reach the boundaries and (3) for large-scale
worlds, visiting all the environment to reach the food that is very
far from the nest, could duplicate the area to search and foraging
time increases.

In the near future, we intend to test our approach using real
robots, after its implementation and validation supported by the
ELDAMeth methodology and the PROFETA language. Moreover, we
will provide the implemented Multi-Agent Foraging framework in
open-source to support researchers interested in modeling and
understanding particular Multi-Agent Foraging systems. In fact, by
providing an open-source common framework, we may also facil-
itate comparison among many different foraging systems.
References

Acar, E., Choset, H., Zhang, Y., Schervish, M., 2003. Path planning for robotic
demining: robust sensor-based coverage of unstructured environments and
probabilistic methods. Int. J. Robot. Res. 22 (7–8), 441–466.

Balch, T., 1996. Grid-based navigation for mobile robots. Robot. Pract. 2 (1), 6–11.
Barnes, L., Alvis, W., Fields, M., Valavanis, K., Moreno, W., 2006. Swarm formation

control with potential fields formed by bivariate normal functions. In: 14th

http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref2
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref2

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319318
Mediterranean Conference on Control and Automation, 2006 (MED'06). IEEE,
pp. 1–7.

Barraquand, J., Langlois, B., Latombe, J.-C., 1992. Numerical potential field techni-
ques for robot path planning. IEEE Trans. Syst. Man Cybern. 22 (2), 224–241.

Barth, E.J., 2003. A dynamic programming approach to robotic swarm navigation
using relay markers. In: Proceedings of the American Control Conference, vol. 6.
IEEE, Denver, Colorado, USA, pp. 5264–5269.

Batalin, M.A., Sukhatme, G.S., 2002. Spreading out: a local approach to multi-robot
coverage. In: Proceedings of 6th International Symposium on Distributed
Autonomous Robotic Systems, pp. 373–382.

Beckers, R., Holland, O., Deneubourg, J.-L., 1994. From local actions to global tasks:
stigmergy and collective robotics. In: Artificial life IV, vol. 181. p. 189.

Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm Intelligence: From Natural to
Artificial Systems, vol. 1. Oxford University Press, New York, USA.

Calvo, M.F.R., de Oliveira, J.R., Romero, R.A.F., 2011. Bio-inspired coordination of
multiple robots systems and stigmergy mechanims to cooperative exploration
and surveillance tasks. In: IEEE 5th International Conference on Cybernetics
and Intelligent Systems (CIS), pp. 223–228.

Chattunyakit, S., Kondo, T., Nilkhamhang, I., Phatrapornnant, T., Kumazawa, I., 2013.
Two foraging algorithms for a limited number of swarm robots. In: Proceedings
of SICE Annual Conference (SICE), IEEE, Nagoya, Japan, pp. 1056–1061.

Choi, Y.-H., Lee, T.-K., Baek, S.-H., Oh, S.-Y., 2009. Online complete coverage path
planning for mobile robots based on linked spiral paths using constrained
inverse distance transform. In: Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IEEE, Saint-Louis, Missouri, USA,
pp. 5788–5793.

Collier, N. 2003. Repast: an extensible framework for agent simulation. The Uni-
versity of Chicago's Social Science Research, vol. 36, 2003.

Dorigo, M., Bonabeau, E., Theraulaz, G., 2000. Ant algorithms and stigmergy. Future
Gener. Comput. Syst. 16 (8), 851–871.

Dorigo, M., Birattari, M., Stützle, T., 2006. Ant colony optimization. Comput. Intell.
Mag. 1 (4), 28–39.

Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S., 2012. Collaborative search on the
plane without communication. In: Proceedings of the 2012 ACM Symposium on
Principles of Distributed Computing, ACM, New York, USA, pp. 77–86.

Fortino, G., Russo, W., 2012. Eldameth: an agent-oriented methodology for
simulation-based prototyping of distributed agent systems. Inf. Softw. Technol.
54 (6), 608–624.

Fortino, G., Russo, W., Santoro, C., 2013. Translating statecharts-based into BDI agents:
the dsc/profeta case. In: Multiagent System Technologies, Springer, pp. 264–277.

Fortino, G., Zedadra, O., Jouandeau, N., Seridi, H., 2014. A decentralized ant colony
foraging model using only stigmergic communication. In: Proceedings of XV
Workshop Dagli Oggetti agli Agenti (WOA 2014), vol. 1260, CEUR.

Fortino, G., Rango, F., Russo, W., Santoro, C., 2015. Translation of statechart agents
into a BDI framework for MAS engineering. Eng. Appl. Artif. Intell. 41, 287–297.

Freeman, R.A., Yang, P., Lynch, K.M., et al., 2006. Distributed estimation and control
of swarm formation statistics. In: American Control Conference, vol. 7, Citeseer.

Gabriely, Y., Rimon, E., 2002. Spiral-stc: An on-line coverage algorithm of grid
environments by a mobile robot. In: Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 1, IEEE, pp. 954–960.

Gage, D., 1995. Many-robot MCM search systems. In: Autonomous Vehicles in Mine
Countermeasures Symposium, vol. 9, pp. 56–64.

Grassé, P.-P., 1959. La reconstruction du nid et les coordinations interindividuelles
chezbellicositermes natalensis etcubitermes sp. la théorie de la stigmergie:
Essai d'interprétation du comportement des termites constructeurs. Insectes
sociaux 6 (1), 41–80.

Gutjahr, W.J., 2000. A graph-based ant system and its convergence. Future Gener.
Comput. Syst. 16 (8), 873–888.

Hoff III, N.R., Sagoff, A., Wood, R.J., Nagpal, R., 2010. Two foraging algorithms for
robot swarms using only local communication, in: IEEE International Con-
ference on Robotics and Biomimetics (ROBIO), IEEE, 2010, pp. 123–130.

Hoff, N., Wood, R., Nagpal, R., 2013. Distributed colony-level algorithm switching for
robot swarm foraging. In: Springer Distributed Autonomous Robotic Systems,
pp. 417–430.

Jennings, J., Whelan, G., Evans, W., 1997. Cooperative search and rescue with a team
of mobile robots. In: IEEE 8th International Conference on Advanced Robotics
(ICAR), pp. 193–200.

Jiang, Q., 2006. An improved algorithm for coordination control of multi-agent
system based on r-limited voronoi partitions. In: 2006 IEEE International
Conference on Automation Science and Engineering, pp. 667–671.

Kantor, G., Singh, S., Peterson, R., Rus, D., Das, A., Kumar, V., Pereira, G., 2006.
Distributed search and rescue with robot and sensor teams, in: Field and Ser-
vice Robotics, Springer, Berlin Heidelberg, pp. 529–538.

Kuyucu, T., Tanev, I., Shimohara, K., 2012. Evolutionary optimization of pheromone-
based stigmergic communication, Applications of Evolutionary Computation.
Springer, Málaga, Spain, pp. 63–72.

Landis, A. Geoffrey, 2003. Robots and humans: synergy in planetary exploration. In:
Space Technology and Applications Int. Forum-Staif 2003: Conference on Ther-
mophysics in Microgravity; Commercial/Civil Next Generation Space Transpor-
tation; Human Space Exploration; Symposium on Space Nuclear Power and
Propulsion (20th); Space Colonization (1st), vol. 654, AIP Publishing, Albuquerque,
New Mexico, USA, pp. 853–860.

Lau, B., Sprunk, C., Burgard, W., 2013. Efficient grid-based spatial representations for
robot navigation in dynamic environments. Robot. Auton. Syst. 61 (10), 1116–1130.

Lee, J.-H., Ahn, C.W., 2011. Improving energy efficiency in cooperative foraging
swarm robots using behavioral model. In: 2011 Sixth International Conference
on Bio-Inspired Computing: Theories and Applications (BIC-TA), IEEE, Universiti
Sains Malaysia, Penang, Malaysia , pp. 39–44.

Lee, J.-H., Ahn, C.W., An, J., 2013. A honey bee swarm-inspired cooperation algo-
rithm for foraging swarm robots: an empirical analysis. In: 2013 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), IEEE,
Novotel, Wollongong, Australia, pp. 489–493.

Liu, A.L.D., Zhou, X., Guan, H., 2010. A swarm intelligence based algorithm for
distribute search and collective cleanup. In: IEEE International Conference on
Intelligent Computing and Intelligent Systems (ICIS), vol. 2. IEEE, Xiamen Uni-
versity, China, pp. 161–165.

Méndez, D.C.V., Bartumeus, F., 2014. Random search strategies. Stochastic Foundations
in Movement Ecology, vol. 23. Springer-Verlag, Berlin Heidelberg, pp. 177–205.

Mamei, M., Zambonelli, F., 2005. Spreading pheromones in everyday environments
via RFID technologies. In: Proceedings of the 2nd IEEE Symposium on Swarm
Intelligence.

Marjovi, A., Nunes, J.G., Marques, L., de Almeida, A., 2009. Multi-robot exploration
and fire searching. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1929–1934.

Marjovi, A., Nunes, J., Marques, L., de Almeida, A., 2009. Multi-robot exploration and
fire searching. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1929–1934.

Mataric, M.J., 1994. Interaction and intelligent behavior. Technical Report, DTIC
Document.

Meng, Z., Zou, B., Zeng, Y., 2012. Considering direct interaction of artificial ant colony
foraging simulation and animation. J. Exp. Theor. Artif. Intell. 24 (1), 95–107.

Momen, S., 2013. Ant-inspired decentralized task allocation strategy in groups of
mobile agents. Procedia Comput. Sci. 20, 169–176.

Panait, L., Luke, S., 2004. A pheromone-based utility model for collaborative fora-
ging. In: Proceedings of the Third International Joint Conference on Autono-
mous Agents and Multiagent Systems, vol. 1. IEEE Computer Society, New York,
USA, pp. 36–43.

Panov, S., Koceska, N., 2014. Global path planning in grid-based environments using
novel metaheuristic algorithm. In: ICT Innovations 2013, Springer, Ohrid,
Macedonia, pp. 121–130.

Pasqualetti, F., Franchi, A., Bullo, F., 2010. On optimal cooperative patrolling. In:
Proceedings of the 49th IEEE Conference on Decision and Control (CDC),
pp. 7153–7158.

Payton, D.W., Daily, M.J., Hoff, B., Howard, M.D., Lee, C.L., 2001. Pheromone robotics.
In: Intelligent Systems and Smart Manufacturing, International Society for
Optics and Photonics, pp. 67–75.

Pitonakova, L., Crowder, R., Bullock, S., 2014. Understanding the role of recruitment
in collective robot foraging. In: Lipson, H.e.a. (Ed.), Proceedings of The Four-
teenth International Conference on the Synthesis and Simulation of Living
Systems ALIFE. MIT Press, Javits Center / SUNY Global Center, New York, USA,
pp. 1477–1485.

Ranjbar-Sahraei, B., Weiss, G., Nakisaee, A., 2012. A multi-robot coverage approach
based on stigmergic communication. In: Multiagent System Technologies,
Springer, University of Trier, Germany, pp. 126–138.

Schilling, K., Jungius, C., 1996. Mobile robots for planetary exploration. Control Eng.
Pract. 4 (4), 513–524.

Sharpe, T., Webb, B., 1998. Simulated and situated models of chemical trail fol-
lowing in ants. In: Proceedings of the 5th International Conference on Simu-
lation of Adaptive Behavior, pp. 195–204.

Shell, D., Mataric, M.J., et al., 2006. On foraging strategies for large-scale multi-robot
systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, Beijing, China, pp. 2717–2723.

Simonin, O., Charpillet, F., Thierry, E., 2014. Revisiting wavefront construction with
collective agents: an approach to foraging. Swarm Intell. 8 (2), 113–138.

Speranzon, A., 2006. Coordination, consensus and communication in multi-robot
control systems (Ph.D. thesis), Stockholm, Sweden.

Stipes, J., Hawthorne, R., Scheidt, D., Pacifico, D., 2006. Cooperative localization and
mapping. In: Proceedings of the IEEE International Conference on Networking,
Sensing and Control (ICNSC), pp. 596–601.

Svennebring, J., Koenig, S., 2004. Building terrain-covering ant robots: a feasibility
study. Autonom. Robots 16 (3), 313–332.

Thrun, S., Bücken, A., 1996. Integrating grid-based and topological maps for mobile
robot navigation. In: Proceedings of the National Conference on Artificial
Intelligence, pp. 944–951.

Vaughan, R.T., Støy, K., Sukhatme, G.S., Matarić, M.J., 2000. Blazing a trail: insect-
inspired resource transportation by a robot team. In: Distributed Autonomous
Robotic Systems 4, Springer, pp. 111–120.

Vaughan, R., 2008. Massively multi-robot simulation in stage. Swarm Intell. 2 (2–4),
189–208.

WeiXing, Y.X.F., KeJun, W., ShuXiang, G., 2006. Novel algorithms for coordination of
underwater swarm robotics. In: IEEE International Conference on Mechatronics
and Automation, pp. 654–659.

WeiXing, F., KeJun, W., XiuFen, Y., ShuXiang, G., 2006. Novel algorithms for coor-
dination of underwater swarm robotics. In: Proceedings of the International
Conference on Mechatronics and Automation, IEEE, Luoyang, China, pp. 654–
659.

Wilensky, U., 1997. Netlogo ants model, Center for connected learning and
computer-based modeling, Northwestern University, Evanston, IL. [Online].
Available: 〈http://ccl.northwestern.edu/netlogo/models/Ants〉.

Wilensky, U., 1999. Netlogo. 〈http://ccl.northwestern.edu/netlogo/〉. In: Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref4
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref4
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref4
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref8
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref8
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref13
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref13
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref13
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref14
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref14
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref14
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref16
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref16
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref16
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref16
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref24
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref24
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref24
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1001
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1001
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1001
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1001
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref32
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref32
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref32
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref41
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref41
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref41
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref42
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref42
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref42
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref47
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref47
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref47
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref47
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref47
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref47
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref49
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref49
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref49
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref52
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref52
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref52
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref55
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref55
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref55
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref58
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref58
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref58
http://ccl.northwestern.edu/netlogo/models/Ants
http://ccl.northwestern.edu/netlogo/

O. Zedadra et al. / Engineering Applications of Artificial Intelligence 50 (2016) 302–319 319
Winfield, A.F., 2009. Foraging robots, Encyclopedia of Complexity and Systems
Science. Springer, Bristol, UK, pp. 3682–3700.

Yan, Z., Jouandeau, N., Cherif, A.A., 2013. A survey and analysis of multi-robot
coordination. Int. J. Adv. Robot. Syst. 10, 399.

Yean, Y.P., Chetty, R.K., 2012. An efficient grid based navigation of wheeled mobile
robots based on visual perception, Trends in Intelligent Robotics, Automation,
and Manufacturing. Springer, Kuala Lumpur, Malaysia, pp. 128–135.

Zedadra, O., Jouandeau, N., Seridi, H., Fortino, G., 2014. S-MASA, A stigmergy based
algorithm for multi-target search. In: Ganzha, M.P.M., Maciaszek, L. (Eds.),
Proceedings of the 2014 Federated Conference on Computer Science and
Information Systems, Annals of Computer Science and Information Systems,
vol. 2. IEEE, Warsaw, Poland, pp. 1477–1485.

Zedadra, O., Seridi, H., Jouandeau, N., Fortino, G., 2015. Design and analysis of
cooperative and non cooperative stigmergy-based models for foraging. In: IEEE
19th International Conference on Computer Supported Cooperative Work in
Design (CSCWD). IEEE, Calabria, Italy, pp. 85–90.

Zedadra, O., Seridi, H., Jouandeau, N., Fortino, G., 2015. A distributed foraging
algorithm based on artificial potential field. In: 12th International Symposium
on Programming and Systems (ISPS). IEEE, Gdansk, Poland, pp. 1–6.

http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1002
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1002
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1002
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref64
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref64
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1003
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1003
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1003
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1003
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1004
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1004
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1004
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1004
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1004
http://refhub.elsevier.com/S0952-1976(16)00029-4/sbref1004

	A Cooperative Switching Algorithm for Multi-Agent Foraging
	Introduction
	Background and related work
	Basic concepts
	Multi-Agent Foraging problem definition on 2D grids
	S-MASA algorithm
	Related work

	Cooperative Switching Algorithm for Foraging (C-SAF)
	Related algorithms: a comparison
	Performance evaluation
	A simulation framework for Multi-Agent Foraging
	Simulation parameters and performance indices
	Simulation scenarios
	Performance and comparison of cooperative and non-cooperative algorithms
	Average time analysis (Scenario 1 results)
	Returned food analysis (Scenario 2 results)
	Path length analysis (Scenario 3 results)
	Scalability analysis (Scenario 4 results)
	Summary of results

	Toward a robotic implementation
	Conclusion
	References

