
A Distributed Foraging Algorithm Based on
Artificial Potential Field

Abstract—Simple collections of agents that perform collec-
tively and use distributed control algorithms constitute the
interests of swarm robotics. A key issue to improve system
performances is to effectively coordinate the team of agents. We
present in this paper a multi-agent foraging algorithm called
Cooperative-Color Marking Foraging Agents (C-CMFA). It uses
the coordination rules of the S-MASA (Stigmergic Multi-Ant
Search Area) algorithm to (i) speed up the search process and (ii)
allow agents to build an optimal Artificial Potential Field (APF)
simultaneously while exploring. To benefit from multiple robots,
we add one cooperation rule in the algorithm to attract large
number of agents to the found food. This algorithm constitutes a
distributed and synchronous version of the c-marking algorithm.
Simulation results in comparison with the c-marking one show the
superiority of C-CMFA in different environment configurations.

I. INTRODUCTION

Multi-agent approach is suitable for many real world
applications: mine detecting [1] [2], search in damaged build-
ings [3] [4], fire fighting [5], and exploration of spaces [6] [7].
Simple, local and individual rules can provide complex, global
and collective behaviors [8], as in social insects (ants, bees and
termites). Such biological systems use stigmergic communi-
cation (pheromones for example), to coordinate their actions
aiming to improve the performances of the team. Recently
many researchers have investigated this kind of bio-inspired
coordination methods [9] [10]. We focus in this work on the
problem of foraging for robot swarm. Foraging algorithms
allow a collection of agents to search their environment for
a target (’food’), then return it to the nest [11]. Behavior-
based algorithms are well-known in the swarm algorithms
community [12] [13] [14]. These algorithms are based on
a few ’sub-algorithms’ which the collection of agents in-
telligently switches between in various combinations and at
various periods. Gradient-based algorithms are well-known
too in foraging. Agents in these algorithms create gradients
leading from nest to food, while they explore. They use:
physical marks [15] [16], pre-deployed sensor networks [17],
and beacons [18]. In our work, we focus on behavior-based
and gradient-based algorithms. Authors in [19] have developed
behavior and gradient-based algorithm, in which agents can
build gradients by writing integer values in the environment.
The algorithm proposed in this paper is similar to the one
in [19], in that it is behavior-based and agents can write integer
values to create gradients. Differently from [19], our algorithm
uses a new search strategy and include cooperation rule to
accelerate the exploitation of found food.

We present in this paper, a distributed foraging algo-
rithm called Cooperative-Color Marking Foraging Agents (C-
CMFA), which is both behavior-based and gradient-based. To
achieve the foraging task efficiently, agents need a way to
find the food as fast as possible and a way to return to the

nest. In the c-marking algorithm, the convergence of APF
to the optimal values takes huge time. As we want to avoid
such drawback in C-CMFA algorithm, we have used S-MASA
algorithm [20] to accelerate the search time and to allow
agents to build optimal paths by writing integer values while
they explore. We also add one cooperation rule (diffusion of
pheromone to neighbors when food is found) to attract agents
in the neighborhood in order to accelerate the exploitation
of food. We conclude from the quantitative comparisons of
C-CMFA algorithm with c-marking algorithm, that C-CMFA
algorithm is a distributed and synchronous version of the wave-
front algorithm [21], which was enhanced initially by [19], to
distributed and asynchronous algorithm for foraging problem
by multiple agents in bounded grid environments.

The remainder of this paper is organized as follows: in
Section I, we present the two previous works that we reused
to develop our algorithm. In Section II, we describe the C-
CMFA algorithm, specifically its finite state machine and some
comparisons with c-marking algorithm. Section III presents the
performance evaluation of our algorithm with respect to the c-
marking algorithm. Finally, we conclude the paper and present
some future works in Section IV.

II. BACKGROUND

In this section we present the two algorithms that we
have based on to develop our algorithm: the S-MASA algo-
rithm [20] and the c-marking algorithm [19].

A. S-MASA Algorithm

The S-MASA (Stigmergic Multi-Ant Search Area) algo-
rithm is a search algorithm based on the principles of the
ant system and the water vortex dynamics. It have been used
for multi-target search and coverage tasks in bounded grid
environments [20]. The coordination principles depicted in
Figure 1 and reported in Algorithm 1 are used to adjust
the heading of the agents to choose the not visited cells.
It will be applied in this work for multi-agent foraging in
unbounded environments. S-MASA offer some advantages: (1)
It accelerates the search process and (2) It helps to produce
Optimal APF values without the need to revisit already visited
cells because of its vortex turns around the central point and
around agents; this produces optimal paths from food sources
to the nest (if the task needs to return home as foraging for
example).

B. c-marking Algorithm

c-marking algorithm [19] is an original approach for forag-
ing. It is a parameter-free distributed and asynchronous version
of wavefront algorithm [21]. Agents in c-marking algorithm



Data: APF Value
Result: Heading

if (Right cell is marked) then
if (Heading = 270) then

Set heading to 0
else

Set heading to heading + 90
end

end
Algorithm 1: Coordination Principle in S-MASA Algorithm

(a) (b) (c) (d)

Fig. 1: S-MASA coordination principle: (a) Changing heading
from 180 to 270 (b) Changing heading from 270 to 0 (c)
Changing heading from 0 to 90 (d) Changing heading from
90 to 180

build paths simultaneously while exploring the environment,
they avoid local minima by computing a wavefront expan-
sion from the agent destination which involves building an
ascending Artificial Potential Field. Agents follow the negative
gradient at each iteration, it examines the potential values of
the four neighboring cells and moves to the cell with the
smallest value. Because agents use a pseudo random walk
(choose the not marked yet cells) as a search strategy; the
convergence of APF values takes huge time to be reached.
They may, therefore need to visit the same cell several times
before it reaches its optimal value specially when the number
of agents is not sufficient to sustain the cells corresponding to
the wavefront.

Some advantages of c-marking algorithm: (1) Agents build
simultaneously paths when they explore and (2) It is very ro-
bust to agents’ failure and to complex environments. However,
it provides some drawbacks: (1) As a result of the pseudo
random walk, the built paths are not optimal, and the length
of the paths can increase dramatically the foraging time ; (2)
The number of agents that contribute to foraging is in most of
the cases very small especially when the environment is large.

III. C-CMFA ALGORITHM

We assume simple ant-like agents, that can move in an
unbounded grid world in the four directions (up, down, right
and left). The world is unbounded, with a nest, obstacles in
some fixed positions and food locations distributed randomly.
Agents can perceive only the four neighboring cells. They
use indirect communication via writing APF values, to repulse
agents from already visited cells (marked cells). The position
of food locations is unknown to agents, and they must adjust
their headings using the coordination principles introduced in
section II-A and move in the environment. Once the food
is located, agents can pick a limited quantity and deposit

diffusible pheromone to attract the other agents to this food,
then begin returning it to the nest following the negative
gradient.

To achieve the foraging task efficiently, agents need a way
to find as fast as possible the food and some way to return to
the nest. In our proposed Algorithm C-CMFA (Algorithm 2
and Figure 2 represent the behavior executed by agents),
agents:(1) use S-MASA to search for food, (2) follow the
negative gradient of APF values to return home, and (3)
diffuse pheromone to attract agents in order to cooperate in
the exploitation of found food. With these three points, we can
avoid the drawbacks of c-marking algorithm. With point (1),
we speed up the search process and get optimal paths (optimal
APF values) without the need to revisit already visited cells.
While points (2) contributes to accelerate the homing process
by using the optimal paths and point (3) contributes to speed
up the exploitation time by the cooperation.

Figure 2, shows the finite state machine of our foraging
agent. According to surrounding events, the agent switches
between several states: LOOK-FOR-FOOD, CHOOSE-NEXT-
PATCH, PICK-FOOD, RETURN-AND-COLOR, RETURN-TO-
NEST, AT-HOME, CLIMB and REMOVE-TRAIL. It starts with
looking for food (LOOK-FOR-FOOD). If there is no food,
it moves in its environment using CHOOSE-NEXT-PATCH
rules and deposits pheromones that evaporates with the time.
It changes automatically to LOOK-FOR-FOOD state, else it
picks a quantity of food (PICK-FOOD), and returns home
by following the colored trail, if there exists one (RETURN-
TO-NEST). If there exits no trail, it diffuses the informa-
tion to its neighbors by depositing pheromones that do not
evaporate (brown color) and creates one trail by depositing
pheromones that do not evaporate too (yellow color)(RETURN-
AND-COLOR) while returning to home. When the home is
reached, it unloads the food (AT-HOME) and if the food is
exhausted it removes the existing trail (REMOVE-TRAIL), else
it climbs the trail to the food location (CLIMB).

C-CMFA algorithm is similar to c-marking algorithm in
using APF values to return home and in coloring trails to
keep track of found food. However, some differences exist
between them: (1) The search sub-task in C-CMFA algorithm
is achieved by S-MASA algorithm, while in c-marking it
is achieved by pseudo-random walk, (2) The diffusion of
pheromone to attract agents to cooperate in exploitation of
food does not exist, the only way of cooperation in c-marking
is climbing existing trails by different agents, and (3) The
remove trail in C-CMFA is the opposite of c-marking one,
it starts from the nest to the food.

IV. PERFORMANCE EVALUATION

We discuss here the performance of the C-CMFA algorithm
and we compare it with the c-marking algorithm in obstacle-
free and obstacle unbounded environment. We present the pa-
rameters, metrics and scenarios used to evaluate the algorithms.
We present, compare and discuss the obtained results.

A. Parameters and Metrics

Three metrics have been used to test the performance of
the algorithms:



LOOK-FOR-FOOD
if (a resource is found) then go to PICK-FOOD;
else go to CHOOSE-NEXT-PATCH;

PICK-FOOD
Pick up a quantity Qmax of food;
if (trail exist) then go to RETURN-TO-NEST;
else go to RETURN-AND-COLOR;

CHOOSE-NEXT-PATCH
if (obstacle detected) then Avoid Obstacle();
else

Update Value();
if (Brown pheromone here) and (food not
exhausted) then Diffuse Pheromone();
go to food location using brown cells;
else if (Brown pheromone here) and (food
exhausted) then Remove brown trail;
else Diffuse Pheromone();
Detect Pheromone Adjust Heading();
Update Value();
Move();

end

RETURN-TO-NEST
if (Home is reached) then go to AT-HOME;
else move to a neighboring cell with the smallest APF
value;

RETURN-AND-COLOR
if (Home is reached) then go to AT-HOME;
else

move to a neighboring cell with the smallest APF
value;
Color that cell to a specific trail color (yellow);

end

AT-HOME
Unload Food;
if (Trail exists) and (food > 0) then go to CLIMB;
else if (Trail exists) and (food = 0) then go to
REMOVE-TRAIL;
else go to LOOK-FOR-FOOD

CLIMB
Move to neighboring colored cell with the greatest APF
value;
if the color here is yellow then go to CLIMB;
else go to LOOK-FOR-FOOD;

REMOVE-TRAIL
Move to neighboring colored cell with the greatest APF
value;
Update its color to the default one (black);
if the color here is brown then go to
LOOK-FOR-FOOD else go to REMOVE-TRAIL;

Update Value()
Val = 1 + min (4 neighboring values);
write Val in current cell;

Algorithm 2: C-CMFA Algorithm

Fig. 2: Finite state machine of an autonomous foraging agent

• Search time – Represents the number of steps needed
to discover a food.

• Foraging time – Represents the time needed to exhaust
a food, it is measured in steps (ticks).

• Total food returned – The total amount of food that
have been returned to the nest after given elapsed time
steps.

The simulations were carried out using agent-based model-
ing within Netlogo [22], in two world configurations: obstacle-
free and obstacle environment (see Figure 3). The environment
in the two configurations is unbounded, the nest and the
obstacles take fixed positions, and the food is distributed
randomly in a limited region of the environment. Parameters of
the three scenarios used are presented in Table I, where Food
density is the number of food locations, each food location
contains a limited amount of food (Food concentration) and
each agent can carry a limited amount of food at each time
(unit) Agent’s capacity.

(a) (b)

Fig. 3: World setups used in simulations (a) Unbounded
obstacle-free environment (b) Unbounded obstacle environ-
ment, where red arrows in the center are agents, the pink cell
in the center is the nest, the green arrows are food and the
gray clusters are obstacles.

To test the effect of the search strategy on the performance
of the proposed algorithm, we have used scenario 1, scenario



TABLE I: Parameters of scenario 1, scenario 2 and scenario 3

Parameter Value

Scenario 1 Search Time Analysis

Number of agents 5–30

Food density 1 site

Food concentration 30 units

Agent’s capacity 5 unit

Scenario 2 Exploitation Time Analysis

Number of agents 5–30

Food density 1 site

Food concentration 60 units

Agent’s capacity 5 unit

Scenario 3 Returned Food Analysis

Number of ticks 600–4000

Number of agents 10

Food density 2 sites

Food concentration 30 units

Agent’s capacity 5 unit

2 and scenario 3. We test in scenario 1 the efficiency of the
search strategy, we vary in it the number of agents from 5
to 30 to test the effect of the agents number on the search
strategy, we use one food location with 30 units (concentration)
and each agent can carry 5 units at each time. To prove the
efficiency of cooperation in multi-agent foraging, we have used
scenario 2, in which we vary the number of agents from 5 to
30, the environment contain one food site with 60 units each
one, with 5 units as agent’s capacity. In scenario 3, we measure
the amount of food returned over an elapsed time. We vary in
this scenario, the number of ticks from 600–4000, the number
of agents is 10 with 5 units (agent’s capacity) 2 sites were
used each with 30 units each one.

B. Simulation Results and Comparison

In this section, we present, compare and discuss the results
obtained by the two algorithms in the three scenarios showed
in Table I.

Results in scenario 1 prove the efficiency of the search
strategy used (S-MASA algorithm) (see Table II and Fig-
ure 4(a), 4(b)). At each increase in agent’s number, the search
time decreases in the two algorithms. In C-CMFA algorithm,
even with small number of agents we got shorter search time
(5 agents – 346 ticks), while in c-marking algorithm the time is
much longer(9832 tick with 5 agents too). C-CMFA algorithm
is five times faster than c-marking algorithm when the number
of agents is small (5 – 10) and two to three times faster when
the number of agents is greater (15 – 30). We obtain the same
performance of c-marking with 25 agent, with only 10 agents
in C-CMFA.

Scenario 2 was chosen to test the efficiency of the exploita-
tion time of found food which is function of the path length and
number of agents cooperating in the exploitation. We got best
results with C-CMFA algorithm in obstacle-free and obstacle
unbounded environments. The exploitation time decrease with

TABLE II: Results in scenario 1: Search time

5 10 15 20 25 30

Unbounded obstacle-free

C-CMFA 346.4 285.6 187.4 157.7 118.7 89.4

c-marking 9832.7 1551.2 541.7 412.3 277.8 202.4

Unbounded obstacle

C-CMFA 515.7 414.1 287.3 178.5 149.6 114.8

c-marking 11081.2 2310.5 661.2 526.4 303.5 261.8

the increase of agents’ number in the two algorithms. C-CMFA
algorithm is faster two to four times than the c-marking one.
We obtain the same performances in c-marking (25 agents)
with only 10 agents. This quantitative results prove the benefit
of cooperation in multi-agent foraging.

TABLE III: Results in scenario 2: Exploitation time

5 10 15 20 25 30

Unbounded obstacle-free

C-CMFA 291.7 243 172.5 140.4 125.8 92.2

c-marking 1231.5 894.1 656.7 471.6 284.1 213.7

Unbounded obstacle

C-CMFA 335.2 271.8 206.6 192.3 157.8 132.6

c-marking 1404.1 1055 847.8 529.6 390.6 294.4

In scenario 3, we test the performance of the two algo-
rithms by computing the amount of food returned by agents in
some elapsed time (ticks). The total amount of food deposited
in the environment is 60 units divided between two food
sources. With the increase of ticks, the amount of food returned
increase in the two algorithms in obstacle-free and obstacle en-
vironment. While C-CMFA algorithm obtain the total amount
of food in 1000 ticks in obstacle-free environment (1400 ticks
in obstacle environment), c-marking algorithm could not obtain
it, because the environment is unbounded, the number of
agents is not enough to sustain the cells corresponding to the
wavefront and the pseudo random walk can drive agents away
from food. However, when we increase the number of agents
from 10 to 40 in c-marking, it obtains the total amount of
food in 1500 ticks in obstacle-free environment (1800 ticks in
obstacle environment)

TABLE IV: Results in scenario 3: Returned food over ticks

600 900 1000 1400 2100 2500 3000 3500 4000

Unbounded obstacle-free

C-CMFA 43.7 50.7 60 60 60 60 60 60 60

c-marking 19.2 29.5 33.5 40 49.7 57 50.7 52.5 43.5

Unbounded obstacle

C-CMFA 31.2 40.7 47 60 60 60 60 60 60

c-marking 15.7 22.3 25.2 34 43.2 47.5 45.7 36.2 40.7



(a) (b)

(c) (d)

(e) (f)

Fig. 4: Simulation results : (a), (b) Results of scenario 1 in unbounded obstacle-free and unbounded obstacle environment. (c),
(d) Results of scenario 2 in unbounded obstacle-free and unbounded obstacle environment. (e), (f) Results of scenario 3 in
unbounded obstacle-free and unbounded obstacle environment.



V. CONCLUSION

We presented in this paper a distributed foraging algorithm
(C-CMFA), which uses S-MASA algorithm that allows agents
to build optimal paths simultaneously and synchronously while
exploring, which results in accelerating the search process. To
accelerate the exploitation time, agents diffuse pheromones
to attract others agents to cooperate in exploiting the found
food. Three scenarios have been used in simulations: the first
scenario aimed to test the efficiency of the search strategy used
(S-MASA algorithm), the second scenario tested the efficiency
of the homing strategy (paths are optimal or not) and the
third one focused on testing the benefit of cooperation and its
effect on the performances. In the three scenarios, C-CMFA
algorithm gave the best results in obstacle-free and obstacle
unbounded environments with respect to c-marking algorithm.

It is worth pointing out that the c-marking algorithm is
a distributed and asynchronous version of Barraquand et al.
wavefront algorithm [21]. Our algorithm is a distributed and
synchronous version of Barraquand et al. wavefront algo-
rithm [21]. c-marking is asynchronous because the wavefront
is not created at the same time (the optimal values of cells
create the wavefront). The number of agents is not sufficient
to sustain all the cells corresponding to the wavefront. As
a consequence the written values are not optimal from the
first visit and agents need to revisit already visited cells in
order to make them optimal. While the C-CMFA algorithm
is synchronous, because the wavefront is created at the same
time whatever the number of agents and the values are optimal
from the first visit.

The assumption of writing integer values (APF values)
in the environment by agents provide basic solutions for
foraging, however, it is still far from real world applications.
Pheromone is an example of real implementation of stigmergic
communication in real world experiments and it can replace
the integer values. This is one of our future direction to
enhance C-CMFA algorithm. In addition, we intend to improve
the obstacle-avoidance module of this algorithm to deal with
complex environments.
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