Optimal Player Information MCTS applied to
Chinese Dark Chess

Nicolas Jouandeau
LIASD
Paris 8 University
Saint-Denis, France
Email: n@ai.univ-paris8.fr

Abstract—Alpha-beta and Monte-Carlo Tree Search (MCTS)
are two powerful paradigms useful in computer games. When
considering imperfect information, the tree that represents the
game has to deal with chance. When facing such games that
presents increasing branching factor, MCTS may consider, as
alpha-beta do, pruning to keep efficiency. We present a modified
version of MCTS-Solver algorithm, called OPI-MCTS as Optimal
Player Information MCTS, that adds game state information
to exploit logical reasoning during backpropagation and that
influences selection and expansion. OPI-MCTS is experimented
in Chinese Dark Chess, which is a imperfect information game.
OPI-MCTS is compared with classical MCTS.

I. INTRODUCTION

Alpha-beta pruning algorithm is a powerful game-tree
search successfully applied in many domains. By considering
the 2 players as min-player and max-player, it aims to get the
best move according to : (1) an evaluation function applied to
leaf nodes; (2) with the backpropagation of values towards the
root; (3) with cutting possibilities depending on parents and
children values. Even if alpha-beta cuts improves Minimax
a lot (with a pruning that does not change the final result),
their success rate highly depends on the evaluation function
accuracy.

Monte Carlo Tree Search (MCTS) is another powerful
game-tree search, newer than alpha-beta and also successfully
applied in many domains [1]. The first MCTS algorithm is
UCT [2] that combines UCB formula [3] with tree search.
The great benefit of UCT is to be able of being used without
expert domain knowledge.

Chinese Dark Chess (CDC) is a two-players imperfect
information game played with a 4x8 rectangular board where
players do not know the location of their pieces at the begin-
ning. Even if they have the same initial material, their flipping
moves will reveal pieces (own ones or opponent’s ones) that
will define player’s color and pieces positions. Capture are
only allowed from a revealed piece to another revealed piece
or to an empty position. Pieces of each player are divided
between 7 different types, that have to consider different
constraints while they are moving. Even if flipping moves
imply multiple board possibilities, classical moves can lead to
similar positions during the game. CDC tournaments (mainly
at Computer Olympiad (CO), Technologies and Applications
of Artificial Intelligence (TAAI) and Taiwan Computer Game
Association Computer Game Workshop (TCGA)) are using a
Swiss system, with rounds of two games per player. The first
player unable to play loses. To avoid infinite games, 3-times

repetition of a position leads to draw game. When no flipping
or capturing move arises within a fixed number of plies, it is
also leading to draw game. The number of plies depends on
teams involved, commonly 180 plies are considered.

As MCTS deals with statistics without expert knowledge,
efficiency remains linked to branching factor. In TCGA and
TAAI 2012, the MCTS with chance nodes program Diablo won
the competition. In TCGA 2013, the MCTS program Dark-
Knight won the competition ahead 4 other MCTS programs.
In CO 2013, DarkKnight on again. In TAAI 2013, the alpha-
beta program Yahari won the competition. In TCGA and TAAI
2014, the alpha-beta program Yahari won the competition,
leaving the second place to DarkKnight during TCGA. In CO
2015, DarkKnight returned and won. As CDC has a huge
branching due to the revealing moves, chances nodes allow
alpha-beta to reduce the branching factor dependency. Even
if chance nodes have even been used with MCTS by Diablo,
we believe that a better understanding of MCTS behavior and
CDC complexity [4] are needed.

As adding chance nodes seems to reduce the efficiency of
MCTS by sealing it in added chance layers, we propose to add
game state information that could be exploited by a logical
decision process to guide next MCTS iterations, to prune
useless evaluations and also to backpropagate this information
in the tree. We propose to add a termination status that
allows logical backpropagation to define parents termination.
In this way, we present a modified version of MCTS-Solver [5]
applied to Chinese Dark Chess, with new selection, expansion
and backpropagation functions. These new algorithm is called
OPI-MCTS, as Optimal Player Information MCTS. Unlike
the initial MCTS-Solver proposal, we modify the statistics
of nodes according to their termination status without biasing
the formula with expert knowledge. The number of playouts
backpropagated differes depending on nodes types.

This paper is organized as follows: Section II describes
related works in CDC with alpha-beta, MCTS and other
improvements. Section III presents our OPI-MCTS algorithm.
Section IV shows experimental results. Section V concludes.

II. RELATED WORKS

In this section we expose related works on CDC. Recent
works on this game concern alpha-beta pruning, MCTS im-
provements, openings and endgame databases.

Winands et al. [5] presented the MCTS variant called
MCTS-Solver designed to prove the value of positions in

the tree. They applied it to Lines of Action, that is a 2-
players perfect information game with sudden-death situations.
Depending on the rules, positions that validate each players
goal can lead to a win or a draw. They used a modified
version of UCT formula with Progressive Bias based on pre-
computed knowledge of the game. Hsueh et al. [6] used MCTS
with Early Playout Terminations (EPT), Implicit Minimax
Backups (IMB) and Quality-Based Rewards (QBR). They
showed that combining these three techniques improves CDC
MCTS programs.

Lorentz [7] presented MCTS improvements with EPT in
many games with different characteristics. EPT has been
applied successfully to Amazons, Breakthrough and Havannah.

Lanctot et al. [8] proposed a heuristic function to guide
MCTS playouts. This principle, called IMB, has been applied
successfully to Kalah, Breakthrough and Lines of Action.

Pepels et al. [9] proposed to modify playouts rewards with
QBR according to playout length and playout termination.
QBR has been applied successfully to Amazons, Breakthrough,
Cannon, Checkers and Chinese Checkers. Improvements seems
to be stuck for some games like Pentalah that blinds the playout
length indicator.

Chen et al. [10] used alpha-beta algorithm on CDC with
policies to deal with revealing pieces. They also present
a way to reduce the branching factor by linking flipping
moves to depth. Different policies are defined according to
the advancement in game.

Baier and Winands [11] proposed different modifications of
MCTS with minimax-like enhancements during the selection,
playout and backpropagation phases to combine minimax short
term evaluation and MCTS long term evaluation. Experiments
on Connect-4 and Breakthrough show improvements without
adding specific game expert knowledge according to depth and
choosen enhanced phase.

Saffidine et al. [12] used buffering and reevaluation to
solve the problem of chunked data that could come from
UCT parallelisation. The buffering hold statistics inside nodes
and the reevaluation recalculates nodes statistics before a new
selection. Thus nodes statistics are divided between two parts
(i.e. unpropagated and propagated values) and the number of
playouts considered differes from the real ones when buffering
is on.

Yen et al. [13], [14] proposed a way to combine MCTS and
chance nodes [15]. They shown useful policies called Capture
First, Capture Stronger Piece First and Capture and Escape
Stronger Piece First, that improved the program’s level.

Jouandeau and Cazenave [16] presented MCTS influence
of various playout length, playout policy with heuristic board
evaluation. They studied group constitution related to pieces
position. They compared MCTS with chance-nodes and with
group-nodes. It shows that playout lengths, policies and heuris-
tic values are dependant to these MCTS variants.

Jouandeau and Cazenave [17] compared tree reduction
issues for games with large branching factor. They compared
different regrouping policies and nodes selection in CDC. It
shows that chance-nodes regrouping policy is better without
heuristic evaluation and with Minimax termination.

Chang and Hsu [18] solved the 2x4 variant and demonstrate
that the first move is crucial on 2x4 board. They used a Oracle
variant where every pieces are known to compare solutions
with optimal moves.

Chen and Hsu [19] built opening databases. As flipping
moves can reverse the situation, they showed that enhance-
ments provided are probabilistically acquired.

Chen et al. [20] built an endgame databases with retrograd
analysis, up to 8 revealed pieces, using 2TB of memory to
represent 1012 positions. Positions status are stored as win,
lost or draw.

Saffidine et al. [21] built endgame databases with retro-
grad analysis and pieces combinations pieces exploitation. By
combining material, identified symmetries reduce the size of
4 pieces endgame tables by 9.92 and the size of 8 pieces
endgame tables by 3.68.

Chen et al. [22] present equivalence classes computation
for endgames with unrevealed pieces. Boards are identified by
threats and pieces’ positions that are compared in a multiple
steps algorithm. Compression rates of material has been stud-
ied from 3 to 32 pieces. Endgames database has been computed
with 3 to 8 pieces and its number of element is reduced by
17.20.

III. PRUNING IN MCTS

In this section, we present OPI-MCTS algorithm that com-
bines classical MCTS with a full expansion phase, add states
to prooved nodes and at last, apply different UCT formula to
these nodes with virtual numbers of playouts.

A. Classical MCTS with a full expansion

Fig. 1 presents the main loop of classical MCTS al-
gorithm. It consists in iteratively applying the 3 phases
called selection, expansion and backpropagation, illustrated
here respectively by the 3 functions select, expand and
backpropagate. This main loop tries to get the best next
move from the current_board. The search is initialized with
the current_board that defines the root node of the tree. At
each iteration, the selection phase returns the best sequence S
to start with. Then the expansion phase applies S to find the
part of the tree that will grow, getting new results that will be
backpropagated towards shallowest nodes, hoping of getting a
more promising S during next call. The number of new nodes
created during an expansion phase depends on the state of the
last element of S and on its number of children. If the last
element of S is terminal (Fig. 3 lines 2 to 4) then a single
win, draw or lost is added to statistics of ¢; node. Otherwise,
one playout is played for each next move (Fig. 3 line 7). Thus
the number of new nodes added in the tree corresponds to the
number of children of ¢;. To improve the confidence in values
in the tree, we choose to develop all children at each iteration.
It allows us to get more accurate estimates of parent nodes. At
the end, the best next node of the root node defines the best
move.

Fig. 2 presents the classical MCTS selection function. This
function recursively selects the bestChild node according
to statistics while nodes have children.

mcts (current_board)
root < init(current_board)
while not-interrupted do
S « {root}
S + select (S)
(g, w, d,) + expand (S)
backpropagate (¢, w, d, 1)
end while
1 q < best (root)
return ¢

R AR A s

Fig. 1. Classical MCTS algorithm main loop that returns a node g with the
best move from a current board.

select (S)
1: g < last(S)
2: if ¢ has no child then return S
3: Qpest ¢ bestChild (q)
4: return select (S + Qpest)

Fig. 2. Classical MCTS select function.

Fig. 3 presents a full MCTS expansion function. Usually,
the selection is applied until positions of the tree are selected
and then only one node is added. To improve the confidence
in values in the tree, our expandion phase develop all children
of the current node ¢;, to get an accurate estimates of g;. It
starts with retrieving the node g; that corresponds to following
the sequence S from the current_board. Then it checks the
state of the game, and breaks if it is a win, a draw or a lost.
A new result is also added to the current node (Fig. 3 lines
2 to 4). Otherwise new moves are considered from ¢;, to add
new nodes in the tree and to return sums of wins, draws and
loses of all g; children (Fig. 3 line 13). The playout function
should distinguish issues of a random game. Then res should
take its values in {win,draw,lost}. As presented in related
works, the playout function can be enhanced with EPT and
end-game databases. ¢y scores that are always set to 1 here,
can be enhanced with QBR.

expand (S)

q; + apply (current_board , S)

if ¢; is a win then return (¢;, 1, 0, 0)

if ¢; is a draw then return (g;, 0, 1, 0)

if ¢; is a lost then return (¢;, 0, 0, 1)

for each move m from g; do
new_board < apply (g;, m)
res < playout (new_board)
if res is a win then gy < (m, 1, 0, 0)
if res is a draw then ¢y < (m, 0, 1, 0)
if res is a lost then ¢y < (m, 0, 0, 1)
add gy as child of g;

end for

return (g;, Y win, _ draw, Y lost)

. 3. Classical MCTS expand function.

—_ == =
W T QYRR

Fi

73

Fig. 4 presents the classical MCTS backpropagation func-
tion. As playout simulations have been achieved in children,
N value is truly set to allow children to update their UCT
value with the setUctVal function. The upper confidence
bounds (Eq. (1)) is mostly used to define UCT values with

win; winning playouts at node ¢, IN; playouts at node ¢ and
N playouts at the parent. As presented in related works, this
formula can be enhanced with IMB.

wing log(N)
N, PO TN,

ey

argmax;

At last, the best function (Fig. 1 line 8) defines the child
of root that maximizes win;/N;.

backpropagate (¢, w, d, [)
L gN+=w+d+1
q.win += w
q.draw +=d
q.lost +=1
for each child e of g do
setUctVal (e)
end for
if g.parent # () then
backpropagate (g.parent, qwin, q.draw, q.lost)
end if

g. 4. Classical MCTS backpropagate function.

R A A o

._.
4

Fi

To store more information in nodes, we added a game
state information that contains the outcome of the game for
optimal players. Corresponding to the common results of two-
players games, we defined 3 values that are WIN, DRAW
and LOST. The game tree is then composed with classical
nodes and with nodes that hold game outcome information.
As this information defines the optimal player outcome, our
OPI-MCTS algorithm is carrying OPI-nodes. This allows us
to settle an UCT improvements that will certainly play the
optimal move according to the number of iterations performed
from the current state. Improvements consist in exploiting OPI-
nodes during selection, modifying UCT formula for OPI-nodes
and taking into account OPI-nodes during backpropagation.
Therefore, the main loop of our improved MCTS algorithm
stops as soon as the root node is an OPI-node. In the whole
process, the goal is to avoid the selection of OPI-nodes, to
overestimate UCT values of WIN OPI-nodes, to underestimate
UCT values of DRAW and LOST OPI-nodes.

B. Exploiting OPI-nodes

One way to exploit OPI information should be to add
virtual win, draw or lost to these nodes. Such issue is not easy
due to the UCT formula that contains an exploitation part and
an exploration part, where OPI concerns only the exploitation
part. On the other way, we choose to keep statistics as they are
and just remove these nodes from the MCTS selection phase.

Fig. 5 presents the OPI-MCTS selection function. This
function recursively selects the bestNonOpiChild node
according to statistics while nodes have children. As a node
with only OPI-nodes children must be an OPI-node, we are
free to select nodes without checking children existence as in
the classical MCTS selection function.

Fig. 6 presents the OPI-MCTS expansion function. As in
the OPI selection function, we can retrieve g; without checking
that it corresponds to a terminal game state. Compared to the
classical selection function, this one is thus slightly simplified.

select (S)
1: g last(S)
2! Qpest ¢ bestNonOpiChild (q)
3: return select (S + Qpest)

Fig. 5. OPI-MCTS select function that avoids OPI-nodes encountered.

expand (S)

1: q; < apply (current_board , S)

2: for each move m from ¢; do

3: new_board < apply (q;, m)
res < playout (new_board)
if res is a win then ¢y < (m, 1, 0, 0)
if res is a draw then ¢y < (m, 0, 1, 0)
if res is a lost then ¢y < (m, 0, 0, 1)
8: add gy as child of g;

9: end for
10: return (g;, Y win, Y draw, Y lost)

Fig. 6. OPI-MCTS expand function with OPI-nodes.

Nk

C. OPI-nodes UCT values

According to the fact that OPI-nodes are not fairly consid-
ered in the selection phase, their final UCT-value is different
at the end. As they are no more selected as soon as they are
known as OPI-node, their exploration term is more important
than their siblings. To fix it, we defined modifications of UCT
formula to compute their final UCT value:

e For WIN OPI-nodes, we used Eq. (2). Their exploita-
tion term is overestimated 100% wins that ranked them
first.

e For DRAW OPI-nodes, we used Eq. (3). It corresponds
to the average of the number of playout performed in
their siblings. As we do not want to promote moves
that lead to draw games, we restrict their UCT value
to an exploration term, to make as much as undefined
nodes more interesting than these nodes, even if they
have low success rate.

e For LOST OPI-nodes, we used Eq. (4). Their previous
DRAW OPI-nodes value is reduced by a constant
factor that corresponds to a minimum success rate of
classical nodes before behind worst than DRAW OPI-
nodes.

log(N)
1.0+C 2
+ N, 2
log(N — N; + =0
e a— 3)
T7
log(N — N; + =41
| e “)
T—1

In Eq. (2), (3) and (4), T defines the number of siblings
of the node 7. Fig. 7 presents UCT-values for classical nodes,

Be-01

5.5e-01
Se-01

4.5e-01 |
4e-01 o #*

3.5e-01 *
3e-01 *

2.5e-01 -
2e-01 -| *****

1.5e-01 o **************:ii#**#ix************************w

* ¥y

Te 0l o bbbt b PR & . S S S S

5e-02

0200 T T T T T T T T T
[+] 5 10 15 20 25 20 35 40 45 50

Fig. 7. Visualization of UCT values defined by Eq. (1), (3) and (4) for nodes
with 10 siblings (i.e. T" = 10) and various number of playouts. x-axis defines
the number of playouts of the visualized node and y-axis shows the resulting
UCT-value. Classical nodes (Eq. (1)) with a win success rate of 10% are in
green, Classical nodes (Eq. (1)) with a win success rate of 0% are in red,
DRAW OPI-nodes (Eq. (3)) are in blue * signs and LOST OPI-nodes (Eq. (4))
are in blue + signs. C1 equals 0.33 in this case.

DRAW OPI-nodes, LOST OPI-nodes in similar situation. Their
number of siblings is 10 and the number of playouts of their
parent is 200 (that makes an average of 20 playouts per child).
Green nodes are classical nodes with a success rate of 10%
and red nodes are without win. Before the average of playouts
per sibling, classical nodes are always better than OPI-nodes.
LOST OPI-nodes are worst than DRAW OPI-nodes according
to C7 constant value.

D. OPI-node backpropagation

As we always develop all the children of a node during
the expansion phase, it allows us to define the parent status by
analysing children status. According to Eq. (2), (3) and (4), we
backpropagate a virtual number of playouts from DRAW and
LOST OPI-nodes that tries to avoid these nodes. As defined
in Eq. (5), this virtual number of playouts is the maximum
between the number of playouts N; and the average number
of playouts achieved in 7" sibling nodes. This number of virtual
simulations is backpropagate until the root node.

&)

N — N;
max (Ni)

T-1

Fig. 8 presents the OPI-MCTS backpropagation function
for w wins, d draws and [losts at a node ¢ . Even if
UCT-values are backpropagated towards parent, OPI-value can
be backpropagated to parent depending on logical conditions
(lines 11 to 18):

e If one child is an WIN OPI-node, then the parent is
also a WIN OPI-node (line 11).

e If all children are LOST OPI-nodes, then the parent is
also a LOST OPI-node (line 13).

e If all children are DRAW OPI-nodes, then the parent
is also a DRAW OPI-node (line 15).

e If all children are LOST and DRAW OPI-nodes, then
the parent is also a DRAW OPI-node (line 17).

backpropagate (¢, w, d, [)
1. gN+=w+d+1

2: qwin += w

3: q.draw +=d

4: q.lost +=1

5: £+ 0

6: for each child e of ¢ do

7 setUctVal (e)

8: E+E&+e

9: end for

10: if g.parent # () then

11: if Je,e € £ A e is a WIN OPI-node

12: q.parent <— LOST OPI-node

13: if Ve € £, e is a LOST OPI-node

14: q.parent <— WIN OPI-node

15: if Ve € £, e is a DRAW OPI-node

16: q.parent <— DRAW OPI-node

17: if Ve € &, e is a LOST or DRAW OPI-node
18: q.parent < DRAW OPI-node

19: backpropagate (g.parent, q.win, q.draw, q.lost)
20: end if

Fig. 8. OPI-MCTS backpropagate function with OPI-nodes.

IV. EXPERIMENTS

To compare MCTS and OPI-MCTS on CDC, we present
results with four boards (Fig. 9) and with classical statistics of
tournament between algorithms. All the pieces used are @, ®,
6,® 0,00, 0,0, 0,0, 60,0, 0 where it corresponds
respectively to pawn, cannon, knight, rook, minister, guard and
king for each color (e.g. @ is white pawn and @ is white king).
O represents any unrevealed piece. For all these experiments,
we used an exploration constant /' of 0.3. In the first board
(Fig. 9a), we have limited the classical MCTS with the number
of iterations used by OPI-MCTS to get a result. Usually the
classical MCTS algorithm is always spending all allocated
iterations. In the second board (Fig. 9b), we allowed 10[sec.]
to give the best move. This query has been achieved for each
color. In the third board (Fig. 9c), we allowed 10k iterations for
each algorithm and in the fourth board (Fig. 9d), we allowed
20k iterations for each algorithm. At last, we performed classic
games between MCTS and OPI-MCTS. We played 200 games
and we allowed 300[sec.] per game. While playing in these
games, we allowed to spend 3% of the remaining time, thereby
varying from 9 to a little less than 1[sec.].

The first board (Fig. 9a) is holding 2 pieces (one @ for
the red-player and one @ for the black-player). The starting
position of the black piece is fixed on the top right corner at
d — 8 and the starting position of the red piece is varying
between positions annoted pl to pld. The only position
recorded in the game is the starting position. Then pieces
can move everywhere on the board, according to the rules
(including 3-cycle restriction). Each position has been tested
for red-player turn with MCTS and OPI-MCTS. Results are
respectively presented in Fig. 10 and Fig. 11. According to
positions, columns of Fig. 10 and Fig. 11 give the number
of iterations needed, the number of nodes added in the tree,

the final best red-player move, the corresponding value, the
depth of the tree and the length of the best sequence after this
move. In the first, MCTS corresponding value is the classical
UCT-value.

@

8 8| B
T p2 | pl 71O @)
6 p3 | pd 6| O @
5 p6 | p5 5| @ O|0
4 p7 | p8 4
3 p10| p9 3
2 pli| p12 2 @
1 pld| p13 1 €D
a b c d a b C d
(@) (b)
8 O| 0O 8| O (7]
7@ 7100
6| @ 2| /0|0
5 06| 50|0
4 @ 1 0|0
3 3
2 (5] 2 (1]
1 (4] @ 1
a b ¢ d - a b ¢ d
© @)

Fig. 9. Board examples for performance analysis from different positions
with few pieces. Unrevealed pieces of board (b) are @ © © ®. Unrevealed
piece of board (c) is a @. Unrevealed pieces of (d) are five red pawns @.

In the second board (Fig. 9b) , OPI-MCTS corresponding
value is the game outcome or the modified UCT-value. On this
first board, Fig. 10 and Fig. 11 shows that even if positions
are close, their endings greatly differ in depth and in the
outcome (that oscillates between WIN and LOST). Beyond
giving guaranted termination, OPI-MCTS explores more nodes
than classical MCTS. It shows that MCTS results are better
for winning situations than for losing onces. MCTS tree depth
is smaller than OPI-MCTS tree depth. Sizes of the sequence
that correspond to best moves are shorter in MCTS than in
OPI-MCTS. It could explain the failures of MCTS to find the
optimal move.

The second board (Fig. 9b) is holding move pieces, for
both sides and also with some unrevealed pieces (that are @

pos. iter. nodes best val. depth seq.
pl 3 11 dg8-d7 0.204 2 2
p2 3926 2142 d8-d7 0.940 13 7
p3 83 238 d§-d7 0.063 7 6
p4 4106 1836 d8-d7 0.931 11 3
pS 123 300 d§-d7 0.056 7 4
p6 16317 9987 d8-d7 0.894 15 12
p7 392 889 dg§-d7 0.035 10 6
p8 17784 10938 d8-d7 0.878 15 7
p9 4440 4054 d8-d7 0.015 14 10
pl0 30815 30421 d8-d7 0.823 19 11
pll 20026 23622 d8-d7 0.007 19 14
pl2 27062 31275 d8-d7 0.774 19 11
pl3 59294 53609 d8-c8 0.005 21 12
pld 14866 19947 d8-d7 0.754 18 11

Fig. 10. Classical MCTS evaluates of Fig. 9a black piece positions when it
is red-player turn and there is a @ placed between pl and pl4.

pos. iter. nodes best val. depth seq.
pl 3 I d8-d7 LOST 2 2
p2 3926 12979 d8-d7 WIN 22 16
p3 83 272 d8-c8 LOST 6 6
p4 4106 13933 d8-d7 WIN 21 19
pS 123 380 d8-c8 LOST 11 8
po 16317 55095 d8-d7 WIN 27 23
p7 392 1283 d8-c8 LOST 12 12
p8 17784 59714 d8-d7 WIN 26 17
po 4440 14575 d8-c8 LOST 26 22
pl0 30815 103143 d8-d7 WIN 27 23
pll 20026 66162 d8-c8 LOST 26 20
pl2 27062 89980 d8-d7 WIN 25 17
pl3 59294 198736 d8-d7 LOST 24 22
pl4d 14866 49405 d8-d7 WIN 23 17
Fig. 11. OPI-MCTS evaluates of Fig. 9a black piece positions when it is
red-player turn and there is a @ placed between pl and pl4.
col. iter. nodes best val. depth seq.
MCTS
Red 9671 102227 a5-a4 059 9 5
Black 15830 145283 d5-d1 0.75 9 8
OPI-MCTS

Red 9940 105088 a5-a4 059 9 4
Black 14936 136490 d5-d1 0.75 9 4

Fig. 12. MCTS and OPI-MCTS evaluates of Fig. 9b for black and red moves.

col. iter. nodes best val. depth seq.
MCTS
Fig 9c 10k 95362 b8-c8 0.80 13 11
Fig 9d 20k 182776 c8-b8 0.93 13 13
OPI-MCTS
FigOc 748 6510 a6-b6 WIN 7]
Fig 9d 13936 127207 c8-b8§ WIN 11 10
Fig. 13. MCTS and OPI-MCTS evaluates of Fig. 9c and Fig. 9d for black

player.

© O ®). Results are presented in Fig. 12 for each color. The
difference between Red and Black comes from initial situations

that are different for the two players. Black has less moves at
the beginning due to the number of unrevealed pieces and more
limited moves due to the position of its cannon (piece @ in the
middle) and its guard (piece ® on top right corner). Results
are similar for MCTS and OPI-MCTS, even in the number of
iterations and nodes.

Third and fourth boards (Fig. 9c and 9d) are boards that
can be solved with backtracking captures. In the third, the
remaining piece is @ and black is to play. In the fourth, the
remaining pieces are @ @ @ @ @ and black is to play. Results
of MCTS and OPI-MCTS are presented in Fig. 13. It shows
that OPI-MCTS gets the right moves (and knows that it is
a winning move) where MCTS gets a non-optimal move (In
Fig. 9c, this move will allow to play one time more than a6-
b6 for example) and where MCTS gets the right move with
a rating success of 70%. As presented in the last column of
Fig. 13, after playing the suggested move a6 — b6 on the third
board, a possible winning sequence of length 4 should be a8;
d2-c2; dl1-d2; d5-d2; and black wins as white has only
one cannon @ without possible move.

At last, we achieved matches of MCTS-OPI agains MCTS.
Results are presented in Fig 14. Independently of who is the
first player, OPI-MCTS wins 63% against MCTS and lost 30%
in average. The number of lost are reduced to get draw games
when OPI-MCTS is the first player.

win lost draw
As first player 128 46 26
As second player 124 74 2

Fig. 14.
300([sec.].

OPI-MCTS results against classical MCTS in 400 games of

V. CONCLUSION

We have presented a new algorithm called OPI-MCTS that
exploit termination information to guide MCTS selection and
expansion. It comes from adding game state information to
nodes and to apply a logical backpropagation of this game state
information. As selection avoids known termination nodes, the
expansion is fairly turned towards promising nodes and OPI-
nodes are pruned during MCTS playouts. As possible, OPI-
nodes are exploited to provide the final best move. As OPI-
MCTS is general, it could be applied to many other games.
OPI-MCTS improves classical MCTS as it wins 63% against
a classical MCTS with common CDC tournament settings.
It should provide better results by combining it with other
improvements like EPT.

REFERENCES

[1] C. Browne, E. Powley, D. Whitehouse, S. Lucas, PI. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, A Survey
of Monte Carlo Tree Search Methods. IEEE Trans. on Computational
Intelligence and AI in Games, Vol. 4, num. 1, pp. 1-43 (TCIAIG-2012).

[2] L. Kocsis and C. Szepesvari, Bandit based Monte-Carlo Planning. 17th
Euro. Conf. on Machine Learning, Springer, 2006, pp. 282-293 (ECML-
2006).

[3] P. Auer, N. Cesa-Bianchi and P. Fischer, Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning, Springer, 2002, Vol. 47,
num. 2-3, pp. 235-256.

[4] N. Jouandeau, Varying Complexity in CHINESE DARK CHESS Stochas-
tic Game. TCGA Workshop 2014, pp. 86-90 (TCGA-2014).

[3]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21

[22]

M.H.M. Winands, Y. Bjornsson, J.T. Saito, Monte Carlo Tree Search
Slver. Computers and Games, 5131, pp. 25-36 (CG-2008).

C-H. Hsueh, I-C. Wu, W-J. Tseng, S.J. Yen and Jr-C. Chen, Strength
Improvement and Analysis for an MCTS-Based Chinese Dark Chess
Program. 14th Int. Conf. Advances in Computer Games (ACG-2015).

R. Lorentz, Early Playout Termination in MCTS. 14th Int. Conf. Ad-
vances in Computer Games (ACG-2015).

M. Lanctot, M.H.M. Winands, T. Pepels and N.R. Sturtevant, Monte
Carlo Tree Search with Heuristic Evaluations Using Implicit Minimax
Backups. IEEE Int. Conf. on Computational Intelligence and Games, pp.
1-8 (CIG-2014).

T. Pepels, M.J. Tak, M. Lanctot and M.H.M. Winands, Quality-Based
Rewards for Monte-Carlo Tree Search Simulations. 21st Euro. Conf. on
Artificial Intelligence., pp. 1-6 (ECAI-2014).

B-N. Chen, B-J. Shen and T-S. Hsu, Chinese Dark Chess. ICGA
Journal, 2010, Vol. 33, num. 2, pp. 93—-106.

H. Baier and M.H.M. Winands, Monte-Carlo Tree Search and minimax
hybrids. IEEE Int. Conf. on Computational Intelligence in Games, pp.
1-8 (CIG-2013).

M. Chee, A. Saffidine and M. Thielscher, A Principled Approach to the
Problem of Chunking in UCT. 1ICAI Computer Games Workshop 2015,
Springer CCIS, pp. 1-14 (IJCAI-CGW-2014).

S-J. Yen, C-W. Chou, Jr-C. Chen, I-C. Wu and K-Y. Kao, The Art of the
Chinese Dark Chess Program DIABLE. Advances in Intelligent Systems
and Applications, Springer Berlin Heidelberg, 2013, Vol. 1, pp. 231-242.

S-J. Yen, C-W. Chou, J-C. Chen, I-C. Wu, K-Y. Kao, Design and
Implementation of Chinese Dark Chess Programs. IEEE Trans. on
Computational Intelligence and Al in Games, Vol. 7, num. 1, pp. 1-
9 (TCIAIG-2014).

M. Lanctot, A. Saffidine, J. Veness, C. Archibald and M. Winands,
Monte Carlo *-Minimax Search. 23rd Int. Joint Conf. on Artificial
Intelligence (IICAI-2013).

N. Jouandeau and T. Cazenave, Small and Large MCTS Playouts
Applied to Chinese Dark Chess Stochastic Game. ECAI Computer
Games Workshop 2014, Springer CCIS, Vol. 504, pp. 78-90 (ECAI-
CGW-2014).

N. Jouandeau and T. Cazenave, Monte-Carlo Tree Reductions for
Stochastic Games. 19th Conf. on Technologies and Applications of
Artificial Intelligence, Springer LNCS, Vol. 8916, ISBN 978-3-319-
13986-9, pp. 228-238 (TAAI 2014).

H-J. Chang and T-S. Hsu. A Quantitative Study of 24 Chinese Dark
Chess. 8th Int. Conf. on Computers and Games, Springer, Vol. 8427, pp.
151-162 (CG-2013).

B-N. Chen and T-S. Hsu, Automatic Generation of Chinese Dark Chess
Opening Books. 8th Int. Conf. on Computers and Games, Springer, Vol.
8427, pp. 221-232 (CG-2013).

Jr-C. Chen, T-Y. Lin, S-C. Hsu and T-S. Hsu, Design and Implemen-
tation of Computer Chinese Dark Chess Endgame Database. TCGA
Computer Game Workshop, pp. 5-9 (TCGA-2012).

A. Saffidine, N. Jouandeau, C. Buron and T. Cazenave, Material
Symmetry to Partition Endgame Tables. 8th Int. Conf. on Computers
and Games, Springer, Vol. 8427, pp. 221-232 (CG-2013).

Jr-C. Chen, T-Y. Lin, B-N. Chen and T-S. Hsu, Equivalence Classes
in Chinese Dark Chess Endgames. IEEE Trans. on Computational
Intelligence and Al in Games, Vol. 7, num. 2, pp. 109-122 (TCIAIG-
2014).

