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Abstract. This paper presents an evolution method used to modify
the morphology of humanoids to make them more efficient in a specific
direction of walking. Starting from the NAO’s model used in the 3D Sim-
ulation Soccer League, the walking specializations are based on 5 to 8
parameters that are being evolved. A black-box optimization process is
run and guided by a decision-making function that defines the outcome
of the humanoid evolution process. The simulation results lead to four
optimized morphological profiles, each of them specialized for either for-
ward, or lateral, or diagonal walk, or in-place turn respectively. These
results could be used to build heterogeneous humanoids inside a team of
soccer players.

1 Introduction

The tuning of gait parameters thanks to automatic procedure has been widely
studied. Mimicking humans and using machine learning algorithms are the most
common ways to tune walking parameters. Starting from a set of parameters,
short modifications are applied iteratively to improve the set of parameters,
according to a fitness function. Hebbel et al. [1] successfully used different Evo-
lution Strategies to design a fast forward walker. Following the process of muta-
tion/selection, they proposed solutions to avoid local optima by only selecting
children that differ from their parents and to explore more evolution branches
over developing multiple parents. Niehaus et al. [2] used Particle Swarm Opti-
mization to design an omni-directional walk. The omni-directional property is
synthesized into five walking direction sets. As the gait is modelled with a 14
parameter set, the robot uses parameter values that are defined for the synthe-
sized walking direction. Different speeds result from this approach. Moving left,
backward and diagonally forward are equivalent. Compared to these first three
directions, moving diagonally backward is slower and moving straight forward
is faster. MacAlpine and Stone [3] proposed the use of a uniform-velocity omni-
directional walk. The optimization process is achieved with Covariance Matrix
Adaptation Evolution Strategy [4] that is able to adapt the next generation
according to previous generations’ results. The evaluation of walking parame-
ter sets is guided by goToTarget trials, that consist of a sequence of moves to
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different targets along different directions. Travelled distance, spent time and
number of falls are taken into account to define a reward of the tested 14 pa-
rameters. To keep the advantage provided by fast forward walking and accurate
positioning in the field, they added a Sprint parameter set and a Positioning
parameter set. Results are developed over 5 reward policies that produce dif-
ferent forward/backward/sideways walking speeds. Farchy et al. [5] introduced
Grounded Simulation Learning to reduce the gap between simulation and real
application in humanoid walking optimization. The simulation process includes
simulation server modification to fit simulation and application results, although
models are slightly different. Simulation tests use the original NAO version and
application tests use the last NAO version with longer legs.

The different techniques in the related work listed above lead to significant
results on skill design optimization. However most of the optimization tech-
niques depend on the optimization problem itself. As we look for a single uniform
optimization technique without any preliminary step of parameters definition,
particle swarm optimization techniques were discarded due to the definition of
population size and selection operator that clearly influence the optimization
effectiveness and thus require more optimization iterations. Previous work on
learning methods also proposed to change reward weights over time to reduce
the number of optimization iterations. As we study multiple skill optimization
with different metrics, learning methods were also discarded. Therefore the main
contribution of this paper is to present a unified humanoid enhancement process
through an evolution method that is defined as generic, so that it allows enhanc-
ing different skills for different moves using different morphological models.

Jouandeau and Hugel [6] introduced an optimization process that is applied
to both morphological characteristics and walking parameters [7, 8]. They im-
proved the forward walking speed by tuning 2 morphological and 3 functional
parameters using the Confident Local OPtimization [9] (CLOP) process. Two
policies were finally proposed to define a best-first agent and a best-average
agent. Results showed improvements of the morphological model as the opti-
mization process produced faster humanoid walkers, with more realistic, safe
and precise walk. The authors also used the same optimization framework to
increase kicking skills of humanoids [10]. For a kick move, they applied a skill
optimization process to different subsets of parameters of kicking parameters.
Results shows that sequential sub-process optimization can lead to better re-
sults.

The developments described in this paper extend the above concept of simul-
taneous tuning of leg morphology and walking parameters to build humanoids
with enhanced walking skills in a specific direction. 5 to 8 parameters are being
evolved to optimize 4 different walking specializations, that are forward walk,
lateral walk, diagonal walk, and in-place turns.

This paper is organized as follows. Section 2 describes the walking gaits that
were used for the proposed approach. Section 3 describes the proposed opti-
mization process according to four desired walking specializations. The process
produces simultaneous evolution of morphological parameters and walking pa-
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rameters to enhance walking skills. Section 4 describes and discusses the obtained
results. Section 5 concludes.

2 Walking gaits

In this study walking gaits were based on the Zero Moment Point (ZMP) tech-
nique [11] applied to the 3D-LIP model [12] that is represented by a single
inverted pendulum with a massless telescopic leg that connects the supporting
foot and the Center Of Mass (COM) of the entire robot. The height of the COM
is kept constant, and there is no torque between the ground and the supporting
foot. The robot is assumed to walk on a horizontal plane, with alternating single
support phases. The double support phase is thus instantaneous.

The equations that govern the relationship between the position (xG, yG, zG)
of the COM and the ZMP – named P ∗ – are given by [12]:

ẍG =
g

zG
(xG − xP∗) (1)

ÿG =
g

zG
(yG − yP∗) (2)

where g is the gravity.
In our approach the ZMP is kept fixed for each single support phase. This leads
to a hyperbolic shape of the COM trajectory for each step, also called walking
primitive:

xG(t) = (x
i(n)
G − xP∗) cosh(t/TC)

+TC ẋ
i(n)
G sinh(t/TC) + xP∗ (3)

ẋG(t) = (x
i(n)
G − xP∗) sinh(t/TC)/TC

+ẋ
i(n)
G cosh(t/TC) (4)

where n is the step number, x
i(n)
G and ẋ

i(n)
G are respectively the COM initial

x-position and the COM initial x-velocity of step n, and TC =
√

zG
g . The same

holds for yG(t) and ẏG(t).

3 Gait and morphological optimizations

This section presents the evolution process proposed to improve displacement
capabilities of humanoids. The optimization process modifies the morphological
characteristics and the walking parameters. It is applied to 4 typical moves:
forward translation, lateral translation, diagonal translation, and rotation, to
create players with self-adapted morphologies. This section also details different
scoring functions for these moves.
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3.1 Evolution process

Using the black box optimizer CLOP, the evolution process is run with a list
of input parameters, minimum and maximum values for each parameter and a
pick-out function to qualify results. The set L defines input parameters with
their minimum and maximum values. During the evolution process, results are
collected in the history setH. For each evolution iteration, a new set of parameter
values are chosen from L according to H. Each evolution iteration is processed
over 10 trials, to produce average evaluation values. At the end of each evolution
iteration, the fitness function pickOut states if the result is better, equivalent or
worse than the best known result. Then parameters converge to best evolution
values. This evolution process is presented in Alg. 1. It can be applied to different
types T that defines the content of all sets.

Algorithm 1 evolution < T >(n, L, pickOut)

1: (ν′, H) ← (∅, ∅)
2: for i = 0 to n do
3: p← newParams < T >(H, L)
4: (ν) ← multipleTrials < T >(p)
5: (ν′, h) ← pickOut < T >(ν, ν′)
6: insert < T >((p , h), H)
7: end for
8: return paramsFrom < T >(ν′)

The pickOut function returns three possible values that correspond to better,
equivalent and worse results. At each iteration, a new set of parameters p is
chosen. ν′ stands for best acceptable results. Each CLOP iteration implies that
a new tuple (p,h) is inserted in H. If n is too small, ν′ could remain empty,
which means that no solution is found over n iterations. As presented in Alg. 1
line 1, the process is started from scratch. At the end, the best parameters that
correspond to the results ν′ are returned.

3.2 Evaluation of evolution

A list of constant values are required for the evaluation of the evolution. The
SUCCESS RATE (that is equal to 0.75) defines the rate of trials achieved
without falling. The XY RATIO (that is equal to 0.1) represents the maximal
lateral drift allowed, and Y X RATIO (that is equal to 0.1) the maximal lon-
gitudinal drift allowed. The DIAG RATIO (that is equal to 1.1) qualifies the
maximal drift allowed in a diagonal move between longitudinal and lateral dis-
tances travelled. α and β (that are equal to 3 and 1) are introduced to compare
averages related to the normal distributions used in the process. γ (that is equal
to 0.7) is a ratio to compare standard deviations and to quantify stability.

Our evolution process for humanoids is based on the optimization of 4 types
T that correspond to 4 different basic moves : 3 translations and 1 rotation. For
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Algorithm 2 pickOut < T >((s, m, σ), (s′, m′, σ′))

1: if s < SUCCESS RATE then return REJECT ;
2: if type = FORWARD then
3: if my/mx > XY RATIO then return REJECT ;
4: return translationPickOut (m, σx, m′, σ′

x);
5: end if
6: if type = LATERAL then
7: if mx/my > YX RATIO then return REJECT ;
8: return translationPickOut (m, σy, m′, σ′

y);
9: end if

10: if type = DIAGONAL then
11: if my/mx > DIAG RATIO or mx/my > DIAG RATIO then
12: return REJECT ;
13: end if
14: e← sqrt (σx+σy)
15: e′ ← sqrt (σ′

x+σ′
y)

16: return translationPickOut (m, e, m′, e′);
17: end if
18: if type = ROTATION then
19: if (m2

x +m2
y) > MAX then return REJECT ;

20: if optimize accuracy then return RPO accuracy (target, m, σ, m′, σ′);
21: if optimize time then return RPO time (m, σ, m′, σ′);
22: end if

each move, < T > defines type value (used in Alg. 2 lines 4, 10, 16 and 24) and
eventually a target value (used in Alg. 2 line 29 specially in an accuracy test). The
3 translations are selected among the 8 discrete walking directions : moving along
the longitudinal axis (forward and backward), moving sideways (right or left) and
moving diagonally (forward or backward, left or right). Since backward walking
patterns are not frequently used, only the 5 forward translational moves, namely
left, diagonal left, forward, diagonal right and right, were selected for the process.
The rotation move is a self-rotating move on the spot. Each translation-move
optimization is based on a single policy. Because the default rotation that was
tuned manually is already effective – fast, large steps and no fall –, it appears to
be close to its optimum parameter values. This is the reason why the optimization
process for rotation moves is associated with two possible policies, the first policy
fosters better accuracy, and the second policy fosters reduced execution time.

The main core of the evaluation function is presented in Alg. 2. Inside each
set ν from Alg. 1 :

– the subset m defines average values of longitudinal step length, lateral step
length, turning step angle and execution time.

– the subset σ defines standard deviations values related to the average values.
– the subset s defines the success rate of the experiments.

Therefore, ν (respect. ν′) set in Alg. 1 is replaced with its subsets (s,m,σ) (re-
spect. (s′,m′,σ′) in Alg .2).
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The evaluation function is used for all moves, calling a more specialized sub-
function if preliminary tests are passed successfully. First of all, as tested in
Alg. 2 line 1, a miminum success rate s is needed. Therefore, depending on the
type of move, the function checks :

– The lateral drift while translating forward, in Alg. 2 line 3.
– The longitudinal drift while translating sideways, in Alg. 2 line 7.
– The shift between translation axes while translating in diagonal, in Alg. 2

line 11.
– The drift while self rotating on the spot, in Alg. 2 line 19.

For the evaluation of translations the same translationPickOut function
is called with the same average results – named m and m′ – but with different
criteria:

– Translating forward uses σx and σ′x that define the standard deviations of
forward translation on the x-axis, in Alg. 2 line 4.

– Translating sideways uses σy and σ′y that define the standard deviations of
sideways translation on the y-axis, in Alg. 2 line 8.

– Translating in diagonal uses distances – named e and e′ – that define the
standard deviations of the achieved distance, in Alg. 2 line 16.

As rotation is already very effective, the optimization of rotation moves in
Alg. 2 is associated with two possible policies, the one fostering accuracy (line
20) or the other one reduced execution time (line 21). Accuracy optimization is
achieved according to a specific target that defines the desired rotation angle.

Details of the respective evaluation functions are explained in the next sec-
tion.

3.3 Specialized evaluations

Specialized evaluations regroup: The translation evaluation function, detailed
in Alg. 3 ; The rotation evaluation function that checks the resulting accuracy,
detailed in Alg. 4 ; The rotation evaluation function that checks the resulting
speed, detailed in Alg. 5.

Algorithm 3 translationPickOut (m, e, m′, e′)

1: if m′ == UNDEFINED then return ACCEPT ;
2: d← sqrt ( m2

x +m2
y );

3: d′ ← sqrt ( m′2
x +m′2

y );
4: if d < d′ − αe′ then return REJECT ;
5: if d < d′ − βe′ then return EQUIV ALENT ;
6: if e < γe′ then return ACCEPT ;
7: if d < d′ then return EQUIV ALENT ;
8: return ACCEPT ;
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All these evaluation functions make use of the three constant values α, β
and γ: α is the nearness factor: if the new result is not close enough to the best
known result, parameters are considered to lead to a worst instead of a best
known result ; β is the equivalence factor: the test is similar to the nearness
factor test with a different threshold. The result is now EQUIV ALENT with
this factor whereas it is REJECT with α. Because we compare averages and
standard deviations resulting from two experiments, it is logical to ensure that
β < α ; γ is the width factor: if the new result is more stable, then it is better.

Algorithm 4 RPO accuracy (target, m, σ, m′, σ′)

1: if m′ == UNDEFINED then return ACCEPT ;
2: if | mθ − target | > | m′

θ − target |+ ασ′
θ then return REJECT ;

3: if | mθ − target | < | m′
θ − target | − βσ′

θ then return EQUIV ALENT ;
4: if σθ < γσ′

θ then return ACCEPT ;
5: if | mθ − target | > | m′

θ − target | then return EQUIV ALENT ;
6: return ACCEPT ;

As these functions are iteratively used, the constant values contribute to the
convergence speed of the evolution.

Algorithm 5 RPO time (m, σ, m′, σ′)

1: if m′ == UNDEFINED then return ACCEPT ;
2: if mtime < m′

time − ασ′
time then return REJECT ;

3: if mtime < m′
time − βσ′

time then return EQUIV ALENT ;
4: if σtime < γσ′

time then return ACCEPT ;
5: if mtime < m′

time then return EQUIV ALENT ;
6: return ACCEPT ;

3.4 Parameters influence and trials

The optimization process can be seen as a nature-inspired growth since it makes
morphological parameters of the legs and locomotion parameters evolve simul-
taneously. The first column of Tab. 1 and Tab.2 contains the morphological leg
parameters and the walking parameters with upper/lower bounds.

The morphological leg parameters are listed first in these two tables. These
parameters are related to the morphology of the leg:

– ThighRelHip2 Z stands for the semi-length of the femur. The change of
this parameter value changes the cural index of the leg, which is the ratio
of the tibia length with the femur length. The cural index is one of the key
parameters in human morphology since it is useful for the comparison of the
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different bipeds that colonized the Earth since the appearance of the first
hominids. The tibia length is kept fixed.

– Hip1RelTorso X is the half length between hips. This parameter can be
tuned to build a larger or a narrower pelvis for the humanoid robot. A
larger pelvis can increase the reachable space of the legs below the trunk
and reduce collisions between legs. This parameter is expected to influence
the quality of the walking patterns that involve sideways moves.

– ratio flexion is the leg flexion ratio, which is defined as the ratio of the hip
height from the ground over the total length of the leg when stretched. A
change of the flexion ratio has an influence on the way the robot walks, i.e
with knees more or less flexed.

The walking parameters are listed below the morphological parameters in Tab. 1
and Tab.2. The walking parameters can be varied to tune the walking skills of
the robot in order to get a quick and well-balanced gait:

– offset MidAnkles 2 Torso I stands for the horizontal distance between the
middle of the ankles and the torso center. This parameter allows to balance
the weight of the torso with respect to the flexed legs. The COM is considered
to be fixed with respect to the torso, and its coordinates inside the torso
coordinate frame are calculated automatically in the standing position as a
function of the morphological parameters. This is an usual approximation in
the case of the LIP-3D model.

– height lift is the maximal height of leg lift-off.
– xlength step max is the maximal forward step length.
– ylength step max is the maximal sideways step length.
– theta step max is the maximal turning step angle.
– dist between feet p points is the distance between ankles in the rest posi-

tion. This distance can be adjusted for the robot to walk with the feet more
or less apart from each other. This walking parameter is expected to be
influenced by the pelvis size.

4 Experiments and results

The simulation software is composed of 5 different parts, i.e. rcssserver3d [13,
14], the client agent rcssagent3d-like, a coach (that is responsible for starting
trial), the CLOP framework [9] and utilities that link everything.

Table 1 indicates the parameters that were used for each walking gait opti-
mization. Table 2 contains the optimized parameters resulting from each of the
5 experiments (that were run according to the 5 evaluation functions) :

– Moving straight ahead, called Fwd. trial.
– Moving sideways , called Lat. trial.
– Moving diagonally forward, called Diag. trial.
– Rotating accurately, called Rot. trial with Opt.1 on Accuracy parameters.
– Rotating fast, called Rot. trial with Opt.1 on Time parameters.
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Table 3 contains the evaluation values, namely s, mtime, mx, my, mθ and the
related deviations σx, σy and σθ for each experiment.

Tables 2 and 3 recall the default values of the parameters before optimization.
These default values are related to the walking gaits that were tuned manually
using expert’s knowledge. The default values are useful to be compared to the
optimized values obtained.

All experiments change morphological parameters and technical skills simul-
taneously to fit morphology and walking parameters to maximize values while
minimizing other shifting values. As we aim at building a best-first agent, we
only use the Opt.1 policy [6], that defines the best last trial of the evaluation
function. Each optimization is achieved with 500 CLOP iterations. Each CLOP
iteration is performed over 10 trials. Final results are also calculated over 10
trials.

According to the results listed in Tab. 3 :

– While moving forward straight ahead : Fwd. Opt.1 morphology is 1.62 times
faster than the Dflt one (from ratio of mx values in Tab. 3). Fwd. Opt.1
morphology is 1.29 times more stable than the Dflt one (see parameter s in
Tab. 3).

– While rotating : Rot. Opt.1 on Accuracy morphology is 3.44 times slower
than the Dflt one (from ratio of mtime values in Tab. 3). Rot. Opt.1 on
Time morphology is equivalent to the Dflt one (similar values for mtime in
Tab. 3).

– While moving sideways : Lat. Opt.1 morphology is 1.78 times faster than
the Dflt one (from ratio of my values in Tab. 3).

– While moving on diagonal : Diag. Opt.1 morphology is 1.51 times faster
than the Dflt one (from ratio of mx and my values in Tab. 3).

Table 1. All parameters bounds and trial policies

Bounds and trials Min Max Fwd. Rot. Lat. Diag.
Morphological parameters :
ThighRelHip2 Z -0.09 -0.02 X X X X
Hip1RelTorso X -0.01 -0.10 X X X X
ratio flexion 0.60 0.95 X X X X
Walking skills parameters :
offset MidAnkles 2 Torso I 0.001 0.030 X X X X
height lift 0.025 0.080 X X X X
xlength step max 0.020 0.150 X X
ylength step max 0.020 0.150 X X
theta step max 0.020 0.785 X
dist between feet p points 0.020 0.200 X X X

Table 3 shows that the new two rotation morphologies (Rot. Opt.1 on Ac-
curacy and Rot. Opt.1 on Time) are not better than the Dflt one. This results
is not surprising because the rotation gait was carefully designed in the original
morphology as explained in section 2, and because the rotation gait is less sen-
sitive to dynamical effects along the longitudinal direction that is more prone to
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Table 2. Resulting parameter values

Trial Fwd. Rot. Lat. Diag.
Parameters Dflt Opt.1 Opt.1 Opt.1 Opt.1 Opt.1

on Accuracy on Time
Morphological parameters :
ThighRelHip2 Z -0.040 -0.079 -0.082 0.080 -0.061 -0.065
Hip1RelTorso X -0.055 -0.022 -0.096 -0.058 -0.083 -0.062
ratio flexion 0.728 0.902 0.657 0.775 0.809 0.857
Walking skills parameters :
offset MidAnkles 2 Torso I 0.011 0.020 0.006 0.024 0.013 0.009
height lift 0.030 0.063 0.066 0.069 0.044 0.036
xlength step max 0.080 0.125 0.050
ylength step max 0.060 0.121 0.094
theta step max 1.047 0.205 0.757
dist between feet p points 0.110 0.079 0.027 0.123 0.146

Table 3. Results for each trial

Trial Fwd. Rot. Lat. Diag.
Param. Dflt Opt.1 Dflt Opt.1 Opt.1 Dflt Opt.1 Dflt Opt.1

on Accuracy on Time
s 0.70 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mtime 2.807 9.643 3.058
mx 4.422 7.168 0.018 0.023 0.012 0.084 0.078 1.840 2.843
my 0.304 0.553 0.041 0.053 0.025 2.021 3.588 1.942 2.860
mθ 0.123 0.187 5.973 6.161 6.030 0.062 0.060 0.083 0.248
σx 0.046 0.075 0.010 0.023 0.015 0.031 0.048 0.064 0.250
σy 0.234 0.534 0.032 0.036 0.015 0.053 0.046 0.106 0.287
σθ 0.066 0.173 0.068 0.125 0.159 0.021 0.048 0.047 0.131

Table 4. Results of 3 parameter sets for each trial

Trials Fwd. Lat. Diag.
Param. Fwd. Rot.* Lat. Dgn. Fwd. Rot.* Lat. Dgn. Fwd. Rot.* Lat. Dgn.
s 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mtime 1.339 1.380 1.398
mx 7.168 0.035 0.428 1.091 4.737 0.045 0.078 2.423 2.918 0.026 0.418 2.843
my 0.553 0.042 1.961 2.465 0.540 0.049 3.588 2.634 0.201 0.053 3.023 2.860
mθ 0.187 2.232 0.397 0.747 0.270 1.789 0.060 0.119 0.112 2.182 0.237 0.248
σtime 0.001 0.003 0.001
σx 0.075 0.020 0.071 0.046 0.094 0.014 0.048 0.155 0.033 0.015 0.144 0.250
σy 0.534 0.033 0.067 0.053 0.407 0.029 0.046 0.158 0.074 0.039 0.054 0.287
σθ 0.173 0.003 0.052 0.028 0.236 0.010 0.048 0.072 0.064 0.004 0.009 0.131

falling. Therefore none of these new rotation morphologies were selected. the het-
erogeneous team. The three remaining morphologies (Fig. 1) present interesting
properties because they enhance the displacement capabilities, either forward,
sideways or diagonally (see mx and my values in bold font in Tab. 3).

However it is necessary to check that each of the three selected morphologies
is still compatible with the walking gaits in the other directions, i.e. other than
the enhanced direction. Table 4 summarizes such results. It shows that the three
optimized morphologies are compatible with the gaits in the other directions.
In the checking experiments the angle in the rotation gait was limited to 2π/3.
In addition since the lateral morphology increased the lateral step up to the
maximal bound, it was necessary to limit the diagonal step to maintain the foot
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Fig. 1. Fwd., Diag. and Lateral morphologies.

trajectory inside the working volume of the leg. Therefore the diagonal step was
limited to 0.08m.

If we observe the values of the morphological parameters listed in Tab. 2, we
can notice that the Lat. and Diag. morphologies have a wider pelvis compared to
the Dflt morphology and the Fwd. Opt.1 morphology (see Hip1RelTorso X pa-
rameter). The pelvis is even wider in the Lat. morphology to enable a larger side-
ways step, i.e. 0.121m compared to 0.94m with the Diag. values. In addition we
can notice that all three morphologies have longer thighs (see ThighRelHip2 Z
parameter), and that the flexion ratio is also larger, which means that all new
robots will walk in a more high-legged way. This way of walking reminds the
human walk where legs get stretched and flexed alternately. The third observa-
tion concerns the height of foot lift off. This height is reduced for the Lat. and
the Diag. morphologies. Actually it was noticed that the lateral walk was more
sensitive to lift-off height. This is due to ground impacts of the swinging leg that
cause oscillations of the torso in the frontal plane, and these oscillations can
be dangerous and make the robot fall if the amplitude increases too much. The
reduction of the lift-off height is useful to prevent leg impacts from triggering
undesired oscillations.

Thanks to this study it is possible to build a new team with heterogeneous
players where:

– Strikers built on the Fwd. parameter set could be both faster sprinters and
nicely reactive due to their fast rotation speed.

– Midfields built on the Diag. parameter set could be good at breaking oppo-
nents attack.

– Defenders and goalie built on the Lat. parameter set) could be good at
intercepting the ball or the opponent trajectory.

The next developments will aim at testing teams of heterogeneous soccer players
during soccer game plays.

5 Conclusion

We introduced an optimization process that is especially designed for the si-
multaneous evolution of humanoids’ morphological characteristics and walking
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parameters. The optimization process is essentially guided by a fitness function
that distinguishes among better, equivalent and worse results. Three morpho-
logical profiles have been produced to create three agents that appear to be
more effective than the previous agents that were tuned manually by expert
users. Actually the process leads to morphologies well suited for forward walk,
lateral walk and diagonal walk. This process will be applied to the building of a
heterogeneous humanoid team with new models designed according to specific
skills.
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