
Small and large MCTS playouts applied to
Chinese Dark Chess stochastic game

Nicolas Jouandeau1 and Tristan Cazenave2

1 LIASD, Université de Paris 8, France
n@ai.univ-paris8.fr

2 LAMSADE, Université Paris-Dauphine, France
cazenave@lamsade.dauphine.fr

Abstract. Monte-Carlo tree search is a powerful paradigm for full infor-
mation games. We present various changes applied to this algorithm to
deal with the stochastic game Chinese Dark Chess. We experimented
with group-nodes and chance-nodes using various configurations: with
different playout policies, with different playout size, with true or evalu-
ated wins. Results show that extending playout size over the real draw
condition is beneficial to group-nodes and to chance-nodes. It also shows
that using evaluation function can reduce the number of draw games
with group-nodes and can be increased with chance-nodes.

1 Introduction

Chinese Dark Chess (CDC) is a popular stochastic two players game in Asia
that is often played on 4x8 rectangular board where players do not know flipping
moves’ payoff. The two player (called black and red) start with the same set of
pieces: one king, two guards, two bishop, two knights, two rooks, two cannons
and five pawns (pieces that are similar to Chinese Chess). Before the first move,
players do not know their color. The first player move defines the first player
color. In classical games, pieces evolve on squares and can move vertically and
horizontally from one square to an adjacent free square (i.e up, down, left and
right). A piece can capture another piece according to pieces value. Captures
are done on vertical and horizontal adjacent squares except for cannons that
capture pieces by jumping over another piece. Such jump is done over a piece
(called the jumping piece) and to the target piece. Free spaces can stand between
its initial position and the jumping piece and between the jumping piece and
the target position. Even if flipping moves imply multiple board possibilities,
classical moves can lead to similar positions during the game and capturing rules
are different for each piece, MonteCarlo Tree Search (MCTS) programs have
been recently improved as best. We show in this paper two different MCTS
implementations that can be further improved using longer playouts, playing
policies playout and heuristic playout.

Section 2 describes related works. Section 3 presents two MCTS implemen-
tations. Section 4 shows experimental results achieved with different playout
size, playout policies and playout evaluation functions. At the end, section 5
concludes.



2 Jouandeau et al.

2 Related works

In this section we expose related works on CDC. Even if there are few works on
this game, previous works concern alpha-beta, move policies, endgame databases
and MCTS.

Chen et al. [1] used alpha-beta algorithm with different revealing policies
combined with a initial-depth flipping method to reduce the branching factor.
They distinguished opening, middle and endgame to apply different policies.

Chen et al. [2] built an endgame databases with retrograd analysis. Created
databases are done for each first move color, up to 8 revealed pieces. They used
2TB of memory to represent 1012 positions. Positions status are stored as win,
lost or draw.

Yen et al. [3] presented a non-deterministic Monte Carlo tree search model
by combining chance nodes [4] and MCTS. They create shorter simulation by
moderating the three policies named Capture First, Capture Stronger Piece First
and Capture and Escape Stronger Piece First. As draw rate decreases, win rate
increases and simulations are more meaningful for MCTS.

Chang and Hsu [5] solved the 2x4 variant. They created a Oracle variant
where every pieces are known. Comparing the Oracle variant and the classical
variant shows that the first move is crucial on 2x4 board.

Chen and Hsu [6] presented a policy-oriented search method to build opening
books in case of very large state space as it is in CDC. Attack, defend, claim
or discover territory are compared according to player’s turn. Results show that
player’s level is a little stronger with openings. As flipping moves can completely
change the game issue, they showed that enhancements provided are probabilis-
tically acquired.

Safidine et al. [7] exploit pieces combinations to reduce endgame databases.
By combining material symmetry identified by relations between pieces and
endgames building with retrograd analysis, winning positions are recorded in
databases. This general method has been applied to Skat, Dominoes and CDC.
Even if relationship between pieces in CDC creates intricate symmetries, they
reduced the size of 4 elements endgame tables by 9.92 and the size of 8 elements
endgame tables by 3.68.

Chen et al. [8] present equivalence classes computation for endgames with
unrevealed pieces. Boards are identified by threats and pieces’ positions that are
compared in a multiple steps algorithm. Compression rates of material has been
studied from 3 to 32 pieces. Endgames database has been computed with 3 to 8
pieces and its number of element is reduced by 17.20.

Move groups have been proposed in [9] to address the problem of MCTS in
games with a high branching factor. When there are too many moves, it can be
a good heuristic to regroup the statistics of moves that share some properties.
For example in the game of Amazons where the branching factor can be of the
order of a thousand of moves a natural way to reduce the branching factor is to
separate the queen move from the stone placement. In the imperfect information
game Dou Di Zhu, Information Set [10] has been combined with move groups:
the player first chooses the base move and then the kicker, as two separate



Small and large MCTS playouts 3

consecutive decision nodes in the tree. Move groups have also been analyzed on
an abstract game [11].

3 Stochastic MCTS

In this section, we present the use of chance-nodes and of group-nodes with
MCTS. Group-nodes are used to reduce the branching factor created by flipping
moves. In a similar manner to move groups that regroup moves, we define group-
nodes to consider all revealing moves at the same position in a single node. Apart
from that, chance-nodes are the classical way to manage stochastic information
in trees. We present the main loop and the selection function of MCTS with
group-nodes and with chance-nodes. Both algorithms are presented as anytime
interruptible process, that tend to produce better solution over computing time
and that are instantaneously interrupt when time is up or when a winning move
is found.

3.1 With group-nodes

During the game, applying a flipping move can conduct to different boards. At
the beginning of the game, the first player has 32 possible moves that corre-
spond to 4 ∗ 1036 possibilities. During the game, the number of possible boards
linked to flipping moves decreases with the number of unrevealed pieces. For
the penultimate flipping move, 2 boards are possible and for the last flipping
move, only one board. But as the number of possible boards stays over 120 for
more than 5 different pieces, the number of possible boards remains important
at most of the time before endgame. To reduce the number of children node
produced by flipping moves, all possible boards that arise from a flipping move
are gathered in single group-node. Therefore, at the beginning of the game, the
root node is followed by 32 children that are group-nodes. Then other actions
(moves, jumps and captures) are represented in the tree with classical nodes.
The main loop of MCTS with group-nodes is presented in Alg 1. The selection
phase (line 2) returns a node q to expand, its corresponding board and L the list
of moves to apply for expansion. By default, all nodes inserted in the tree have
UNSET winning color. If this node is known as winning position, the process
is interrupted (line 3). Otherwise each element of L creates a new child to q and
store it in N . For each element of N , the board is modified, a new simulation
is applied from the modified board and a new result is backpropagate from the
new node up to the root node. At the end, the bestNext function selects the
best next node qbest of the root node that defines the best next move.

The selection function of MCTS with group-nodes is presented in Alg 2.
The process iterates to find the best node q, its corresponding board and its
moves M. There are 4 different cases:

– q is known as winning position. Then the process is interrupted (line 5).
– q is leading a player to a new winning position. Then it returns q with the

corresponding board and an empty set (line 7).



4 Jouandeau et al.

Algorithm 1 MCTS with group-nodes

1: while not-interrupted do
2: (q, board, L) ← select ( )
3: if q.winning color ! = UNSET then break
4: N ← expandAll (q, L)
5: for each e ∈ N do
6: board′ ←applyMove (e, board)
7: simulate (e, board′)
8: backpropagate (e)
9: end for

10: end while
11: q ← bestNext (root node)
12: return q

– q is a new node that has not been extended previously. Then it returns q
with the corresponding board and new moves that corresponds to the board
(lines 9 to 11).

– q is a group-node previously evaluated with a different flipping outlet that
produces new moves that are not yet considered in q children. Then it returns
q with the corresponding board and new moves that corresponds to only
previously unconsidered moves in q group-node (line 13 to 15).

The next function (Alg 2 line 6) returns all current next nodes of q. The
move function (line 8) returns all next moves of the current board. IfM is empty
(line 9), the corresponding node is noted as winning node for the opponent player
of the current board turn. The test applied line 13, checks if the current situation
fits with the current group-node. If it fits, then the best next function is applied
to select the best nodes inside M (line 17). If it does not fit, then the selection
process is stopped andM becomes a set of previously unconsidered moves (line
14).

3.2 With chance-nodes

During the game, moves can conduct to the creation of chance-nodes. As differ-
ent pieces are unknown, each flipping move is represented with a chance-node.
Other board modifications, like moves, jumps and captures, are represented with
classical nodes. Chance-nodes are composed of classical nodes. At a chance-node,
each flipping possibility corresponds to a new child. The main loop of MCTS
with chance-nodes is presented in Alg 3.

According to UCT formulae, this process applies iteratively selection, sim-
ulation and backpropagation. From a selected node q, the simulation leads to
a new node qnew from which the result of the last simulation is backpropagate
toward the root node. At the end, the bestNext function selects the best next
node qbest of the root node that defines the best next move. The selection of a
chance node can lead to different boards and the selection of a classical node
leads to an expected situation. At the beginning, all nodes are inserted in the



Small and large MCTS playouts 5

Algorithm 2 select ( ) with group-nodes

1: q ← root
2: board← root board
3: M← ∅
4: while not-interrupted do
5: if q.winning color ! = UNSET then break
6: N ← next (q)
7: if size (N ) = 0 then break
8: M ← moves (board)
9: if size (M) = 0 then

10: q.winning color ← opponent (board.turn)
11: break
12: end if
13: if ∃ e ∈M with e /∈ N then
14: M←M− (M∩N )
15: break
16: end if
17: (q, board) ← best next (q, M)
18: end while
19: return (q, board, M)

Algorithm 3 MCTS with chance-nodes

1: while not-interrupted do
2: (q, board) ← select ( )
3: if qnew.winning color ! = UNSET then break
4: qnew ← simulate (q, board)
5: backpropagate (qnew)
6: end while
7: qbest ← bestNext (root node)
8: return qbest



6 Jouandeau et al.

tree without winning color information. If the selected node is a winning node,
the process can be immediately interrupted (line 3 Alg 3 and line 4 Alg 4).

Algorithm 4 select ( ) with chance-nodes

1: q ← root
2: board← root board
3: while not-interrupted do
4: if q.winning color ! = UNSET then break
5: M← moves (board)
6: if size (M) = 0 then
7: q.winning color ← opponent (board.turn)
8: return (q, board)
9: end if

10: if (posi, posf ) ← newMove (q, board, M) then
11: if (posi = posf ) then
12: q′ ← addChanceNode (q)
13: qnew ← addNode (q′)
14: else
15: qnew ← addNode (q)
16: end if
17: board← play (posi, posf )
18: return (qnew, board)
19: end if
20: (q, board) ← best (q, board, M)
21: end while

The selection function of MCTS with chance-nodes is presented in Alg 4.
The process iterates to find the best node q and its corresponding board. From
the root node and the root board, the current board is updated according to the
best move. At each iteration, a set of movesM is defined according to the selected
board position and its turn. If this set is empty (line 6), the corresponding node
is noted as winning node for the opponent player of the current board turn. If
the best move is a new flipping move (line 11), a new chance node and a new
node are added in the tree. If initial and final positions differ, a simple classical
node is added.

4 Experiments

In this section, we present various experiments to select fastest policies, to reduce
draw endgames, with varying playout size, with or without evaluation function.

4.1 Fastest policies

In this section, we present various policies used to enhance playouts. We present
basic and advanced ones and evaluate them to be useful in MCTS with as fast



Small and large MCTS playouts 7

simulations as possible. The fastest policies are considered as most promising
and are selected to continue our study.

We have used 4 basic playout policies, that are natural to use in CDC :

– Random, where players play randomly.
– Capture, where players try to capture opponent pieces.
– Avoid, where players try to avoid opponent’s capture.
– Trap, where players try to minimize opponents moves.

According to these basics policies, we settled 4 advanced policies declined
from the basics:

– Capture and avoid, where players try first to capture one opponent, try
second to avoid opponents and otherwise play randomly.

– Avoid and capture, where players try first to avoid opponents, try second to
capture one opponent and otherwise play randomly

– Capture and trap, where players try first to capture one opponent and oth-
erwise to trap opponents.

– Capture avoid and trap, where players try first to capture an opponent, try
second to avoid opponents and otherwise to trap opponents.

All these policies have been tested for 2000 playouts at the beginning, the
middle and the end of the game. Results are shown in Fig. 1-3 and in Tab. 1.

Fig. 1 show the board at the beginning of the game, when player colors are
unknown. Best moves are colored in gray on the board and are bold in Tab. 1.

8 m m m m

7 m m m m

6 m m m m

5 m m m m

4 m m m m

3 m m m m

2 m m m m

1 m m m m

a b c d

Fig. 1: Beginning.

8 m m m m

7 m ± ­ m

6 m Ï m

5 m m °

4 m Ð Ê m

3 m ± m

2 m m ®

1 m m m ¬

a b c d

Fig. 2: Middlegame.

8 Ï

7 ® ±

6 °

5

4 ¬

3 ¬ ²

2 ± Î

1 ° ¯

a b c d

Fig. 3: Endgame.



8 Jouandeau et al.

Table 1: Playing 2000 playouts at beginning, middle game and endgame.

Policy Time Rem. pieces Playout size
Without eval. fun. With eval. fun.
Best W L D Best W L D

At beginning
Random 0.660 12.16 (2.31) 106.37 (9.25) d7 - - 100 b7 69 30 01
Capture 0.375 5.67 (2.20) 100.01 (17.69) c2 25 22 53 b3 52 48 -
Avoid 5.973 16.78 (2.88) 207.41 (74.49) b2 - - 100 c8 57 43 -
Capture and avoid 0.598 7.24 (2.25) 107.27 (18.05) b1 34 13 53 c8 55 45 -
Avoid and capture 1.049 7.69 (2.20) 123.02 (20.15) c4 18 06 76 c6 38 60 02
Trap 140.457 8.95 (2.15) 579.69 (115.79) d7 - - 100 d6 86 14 -
Capture and trap 99.753 15.07 (3.07) 610.96 (111.26) c3 02 - 98 c5 52 48 -
Capture avoid and trap 39.799 7.12 (2.52) 435.53 (177.59) d3 31 25 44 d1 64 36 -
At midlle game
Random 0.606 12.18 (2.24) 91.89 (9.20) d8 - - 100 c6-c7 43 57 -
Capture 0.348 6.91 (2.17) 75.60 (19.26) c6-c7 48 02 50 c6-c7 90 10 -
Avoid 5.072 16.60 (2.72) 194.68 (87.18) d4 - - 100 d4 55 44 01
Capture and avoid 0.585 7.53 (1.96) 89.06 (17.93) c6-c7 34 02 64 c6-c7 84 16 -
Avoid and capture 0.885 7.55 (2.02) 103.68 (15.79) c6-c7 04 14 82 c6-c7 30 69 01
Trap 157.911 9.68 (1.86) 704.73 (62.78) d7 - - 100 d8 97 03 -
Capture and trap 123.055 14.49 (2.89) 711.58 (45.01) b8 01 - 99 d4 76 24 -
Capture avoid and trap 34.201 9.92 (1.59) 370.29 (177.85) c6-c7 54 00 46 c6-c7 100 - -
At endgame
Random 0.504 8.23 (1.14) 42.72 (1.46) a8-a7 - - 100 a8-a7 - 100 -
Capture 0.469 6.26 (0.94) 41.93 (6.02) a8-a7 00 22 78 a8-a7 - 100 -
Avoid 0.781 10.12 (0.54) 40.66 (1.55) d2-c2 - 02 98 d2-c2 - 100 -
Capture and avoid 0.733 8.00 (0.00) 43.00 (0.00) a8-a7 - - 100 a8-a7 - 100 -
Avoid and capture 0.817 9.80 (0.53) 40.34 (4.36) d2-c2 - 04 96 d2-c2 - 100 -
Trap 11.138 7.00 (0.00) 44.00 (0.00) d2-c2 - - 100 d2-c2 - 100 -
Capture and trap 7.389 11.00 (0.00) 40.00 (0.00) d2-c2 - - 100 d2-c2 - 100 -
Capture avoid and trap 6.030 8.0 (0.00) 43.00 (0.00) a8-a7 - - 100 a8-a7 - 100 -

Fig. 2 shows the resulting board situation after the following 10 turns. Un-
known pieces are represented with white circles. The 10 moves played are (columns
are annotated with letters and rows are annotated with numbers. Flipping moves
indicate a revealed piece under parenthesis. Moving and capturing moves indi-
cate two coordinates. ) :
c4(k) d1(P) ; d2(N) d5(p) ; c2(G) c3(c) ; c5(C) c5-c3 ;

c4(p) c6(M) ; b3(r) c6-c5 ; b3-c3 c2-c3 ; c7(C) c5-d5 ;

b6(g) d5-c5 ; b6-c6 b7(G) ;

It is now first player’s turn to play. 19 reveal moves remain. First player is black
and its non-flipping possible moves are :
b4-b3 ; c6-b6 ; c6-c7 ; c6-c5 ;

Second player is white (i.e. red) and its non-flipping possible moves are :
b7-b6 ; c5-c4 ; c5-d5 ; c3-b3 ; c3-c2 ; c3-c4 ; d2-c2 ;

First player has captured only one C piece and second player has captured 3
pieces that are p c r. Good move for black is c6-c5, or reveal c8 and d7.

Fig. 3 shows an endgame board, where everything is known. Black has clearly
lost the game.

As CDC games can end in a draw, we settled an evaluation function that
can evaluate a draw board. This evaluation is based on the material that is
remaining on the board for one player over its opponent. It allows to assign
numerical value to draw endgame boards. As we do not know if playing first is
an advantage, we allow this evaluation to reply draw if material are equivalent.



Small and large MCTS playouts 9

In some specific cases, draw depends on pieces position and then this function
gives false win detection. In order, pieces {K G M R N C P} are associated to
{0.15, 0.1, 0.07, 0.05, 0.03, 0.05, 0.05}.

Tab. 1 compares the time needed by basic and advanced policies to achieve
2000 playouts. This table also gives the average of remaining pieces and its
standard deviation, the average playout size and its standard deviation, best
moves with and without evaluation function.

It shows that some policies are too slow (i.e. Avoid, Avoid and capture,
Trap, Capture and trap, Capture avoid and trap) to play a significant number
of playouts to be simply used in MCTS. Remaining pieces and playout size
showed us that longer playout could be interesting.

4.2 Reducing draw endgames

In this section, we select the best policies by checking their ability to create as
less draw endgames as possible. Results are presented according to various draw
conditions.

As some policies are considered as too slow, we only kept Random (i.e. RND),
Capture (i.e. CAP RND), Capture and avoid (i.e. CAP AVD RND) and Avoid and
Capture (i.e. AVD CAP RND) (where these three last also call random if nothing
has been done first).

Table 2: Applying 2000 playouts from beginning board.
Policy time[sec] draw Rem. pieces Playout size Draw condition
RND 0.630 1.00 12.62 106.07 40

1.067 0.99 6.03 232.11 160
1.801 0.67 3.24 622.37 640

CAP RND 0.376 0.70 5.66 103.71 40
0.522 0.46 4.59 171.77 160
0.802 0.31 4.29 335.92 640

CAP AVD RND 0.598 0.73 7.15 110.45 40
0.953 0.53 6.07 185.41 160
2.139 0.43 5.87 403.44 640

AVD CAP RND 1.012 0.87 7.77 124.29 40
1.707 0.69 6.19 223.51 160
4.353 0.59 5.85 550.41 640

Tab. 2 shows the time used to generate 2000 playouts from the beginning
board. Next columns show the draw ratio, the average number of pieces at the
end, the playout size according to different draw conditions. In a normal game,
the draw condition is equal to 40 moves without capture or reveal. It shows
that the number of draw can be reduced significantly by increasing the draw
condition. In the same time, the number of remaining pieces are reduced. It
shows that CAP RND is really efficient for very important value of draw condition.
We decided to eliminate the AVD CAP RND policy that increases the time with
fewer draw than simple RND policy.



10 Jouandeau et al.

4.3 Group-nodes vs. chance-nodes

In this section, we challenge MCTS players by facing group-nodes against chance-
nodes, with different playout size, with most promising policies. For each com-
bination, we also checked the evaluation influence in helping MCTS formulae
to select better player. All the player are tested against a reference player, that
simply plays randomly when pieces are unrevealed and otherwise applies mini-
max to find the best move. Results are shown in Tab. 3 for 500 games with half
as first player and half as second player. Each player has 1 sec to generate a new
move. The corresponding number of draw games are shown in Fig. 4 for MCTS
with group-nodes and in Fig 5 for MCTS with chance-nodes.

Table 3: Playing 500 games against reference player.
playout size 40 160 640 2560

win lost win lost win lost win lost
chance-nodes C2-R 0 255 4 298 213 109 164 72

C2-R-h 9 137 104 64 116 43 135 42
C2-CR 244 16 242 21 245 15 149 21
C2-CR-h 131 15 143 14 138 23 129 23
C2-CAR 199 33 245 27 239 46 159 47
C2-CAR-h 129 16 125 25 122 9 104 30
playout size 40 160 640 2560

win lost win lost win lost win lost
group-nodes C1-R 10 249 51 185 78 187 64 233

C1-R-h 60 269 103 231 80 219 85 263
C1-CR 35 46 101 52 146 61 137 66
C1-CR-h 120 87 167 98 182 88 147 127
C1-CAR 41 35 103 52 128 93 72 170
C1-CAR-h 109 100 167 86 175 97 130 143

The RND policy is now abbreviate with R, the CAP RND policy is abbreviate
CR and the CAP AVD RND) policy is abbreviate CAR. C1 stands for group-nodes
and C2 stands for chance-nodes. h mentions evaluation function usage and no h

means that only true victories are considered inside playouts.
Results shows that chance-nodes are less effective with evaluation function

where group-nodes are more effective with evaluation function. It further shows
that chance-nodes are more dependant on playout size than group-nodes. Best
group-nodes players achieved 182 and 175 victories when chance-nodes achieved
244 and 245 victories.

For each policy, Fig 4 shows that evaluation function reduces the number of
draw games with group-nodes. Nonetheless the number of draw games is equal
or more important with chance-nodes (see Fig 5).

Table 4: Tournament between UCT players.
C1-CAR-h-640 C2-CR-40 C2-CR-640 C2-CAR-160

C1-CR-h-640 268 / 169 282 / 97 176 / 252 287 / 131
C1-CAR-h-640 228 / 137 156 / 285 236 / 175
C2-CR-40 149 / 220 176 / 204



Small and large MCTS playouts 11

Fig. 4: Group-node draw of Tab 3 Fig. 5: Chance-node draw of Tab 3

Tab. 4 presents a tournament of best chance-nodes and group-nodes players.
It shows that :

– Between group-nodes, CR-h-640 (i.e. Capture with evaluation function and
playout size of 640) is the best policy.

– Chance-nodes even simply with Capture policy are better than group-nodes.
– Between all players, the best is chance-nodes with Capture, without evalua-

tion function and with playout size of 640.

It shows that sophisticated policies are better with group-nodes where the basic
Capture policy is the best with chance-nodes. Extending playout size over the
real draw condition is beneficial to group-nodes and to chance-nodes.

5 Conclusion

We have presented different Monte-Carlo tree search that deal with the stochastic
game Chinese Dark Chess. We have shown relations with playout size, basic
or advanced policies and evaluation function usage. While extending the playout
size is useful to create more inform playouts, an evaluation function usage can
increase or decrease player’s effectiveness through modifying the number of draw
possibilities.

References

1. B-N. Chen and B-J. Shen and T-S. Hsu. Chinese Dark Chess. ICGA Journal, 2010,
vol. 33, num. 2, pp. 93.

2. Jr-C. Chen and T-Y. Lin and S-C. Hsu and T-S. Hsu, Design and Implementation
of Computer Chinese Dark Chess Endgame Database. TCGA Computer Game
Workshop (TCGA-2012).

3. S-J. Yen and C-W. Chou and Jr-C. Chen and I-C. Wu and K-Y. Kao, The Art of
the Chinese Dark Chess Program DIABLE. Proc. of the Int. Computer Symposium
(ICS-2012).

4. M. Lanctot and A. Saffidine and J. Veness and C. Archibald and M. Winands,
Monte Carlo *-Minimax Search, 23rd Int. Joint Conf. on Artificial Intelligence
(IJCAI-2013).



12 Jouandeau et al.

5. H-J. Chang and T-S. Hsu. A Quantitative Study of 24 Chinese Dark Chess, Proc.
of the 8th Int. Conf. on Computers and Games (CG-2013).

6. B-N. Chen and T-S. Hsu, Automatic Generation of Chinese Dark Chess Opening
Books, Proc. of the 8th Int. Conf. on Computers and Games (CG-2013).

7. A. Saffidine and N. Jouandeau and C. Buron and T. Cazenave, Material Symmetry
to Partition Endgame Tables, Proc. of the 8th Int. Conf. on Computers and Games
(CG-2013).

8. Jr-C. Chen and T-Y.Lin and B-N. Chen and T-S. Hsu, Equivalence Classes in
Chinese Dark Chess Endgames, IEEE Trans. on Computational Intelligence and
AI in Games (2014).

9. B.E. Childs and J.H. Brodeur and L. Kocsis, Transpositions and move groups in
Monte Carlo tree search, IEEE Symp. On Computational Intelligence and Games,
pp 389–395 (CIG-2008).

10. P.I. Cowling and E.J. Powley and D. Whitehouse, Information Set Monte Carlo
Tree Search, IEEE Trans. on Computational Intelligence and AI in Games, vol. 4,
num. 2, pp 120–143, 2012.

11. G. Van Eyck and M. Müller, Revisiting move groups in monte-carlo tree search,
Advances in Computer Games, pp 13–23, (ACG-2012).


