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Abstract. Monte-Carlo Tree Search (MCTS) is a powerful paradigm
for perfect information games. When considering stochastic games, the
tree model that represents the game has to take chance and a huge
branching factor into account. As effectiveness of MCTS may decrease
in such a setting, tree reductions may be useful. Chance-nodes are a
way to deal with random events. Move-groups are another way to deal
efficiently with a large branching factor by regrouping nodes. Group-
nodes are regrouping only reveal moves and enable a choice between
reveal moves and classical moves. We present various policies to use such
reductions for the stochastic game Chinese Dark Chess. Move-groups,
chance-nodes and group-nodes are compared.

1 Introduction

Chinese Dark Chess (CDC) is a popular stochastic two player game in Asia
that is most commonly played on a 4x8 rectangular board where players do not
know payoff of reveal moves. The 2 players (called black and red) start with the
same set of pieces. Before the first move, players do not know their colors. The
first player move defines the first player color. Then pieces can capture other
pieces according to their values and their positions. Even if reveal moves imply
a huge number of possible boards, classical moves can lead to similar positions
during the game and capturing rules are different for each piece [7]. As Monte
Carlo Tree Search (MCTS) techniques deal with nodes statistics, blindness goes
along with branching factor. MCTS programs seem to be promising in CDC.
In TCGA 2012, one participant was a MCTS program. In TCGA 2013, five
participants, including the winner called DarkKnight, were MCTS programs.
In TCGA 2014, the alpha-beta program Yahari won the competition ahead
of DarkKnight. As CDC has a huge branching due to the revealing moves, we
try to reduce the revealing moves dependency by applying different ways of
regrouping nodes. In the context of stochastic games, we believe that a better
understanding of MCTS behavior is needed. We show in this paper 3 different
MCTS implementations, called move-groups, chance-nodes and group-nodes,
that are using longer playouts, the same playout policy and no heuristic playouts.
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Section 2 describes related works. Section 3 presents move-groups, chance-
nodes and group-nodes principles applied to MCTS algorithms and different
regrouping policies. Section 4 shows experimental results. At the end, section 5
concludes.

2 Related works

In this section we expose related works on creating nodes and regrouping them
in CDC and in stochastic games.

Most previous works related to CDC consider openings building [2], endgames
building [3–5], sub-problems resolution [6]. Due to a long expertise in alpha-beta,
most programs use the minimax extension to games of chance called expecti-
max [7] with its common pruning extensions Star1 and Star2 [8]. It remains
that MCTS programs are highly sensitive to their parameters [1].

Move-groups have been proposed in [10] to address the problem of MCTS in
games with a high branching factor. When there are too many moves, it can be
a good heuristic to regroup the statistics of moves that share some properties.
For example in the game of Amazons where the branching factor can be of the
order of a thousand of moves, a natural way to reduce the branching factor is to
separate the queen move from the stone placement. In the imperfect information
game Dou Di Zhu, Information Set [11] has been combined with move-groups:
the player first chooses the base move and then the kicker, as two separate
consecutive decision nodes in the tree. Move-groups have also been analyzed on
an abstract game [12].

Chen et al. [7] used alpha-beta algorithm with different revealing policies
combined with the initial-depth flipping method to reduce the branching factor.

Yen et al. [1] presented a non-deterministic MCTS with chance-nodes [13].
They create shorter simulation by moderating the three policies named Capture
First, Capture Stronger Piece First and Capture and Escape Stronger Piece First.

Jouandeau and Cazenave [9] presented MCTS influence of various playout
size, of basic or advanced policies and with heuristic playouts. They studied
group constitution related to position’s pieces. They showed that relevant play-
out sizes, policies and heuristic playouts are not equivalent for chance-nodes and
group-nodes.

More generally, MCTS has been successfully applied in the past to other
multi-player perfect information stochastic games with different regrouping op-
timizations.

In Backgammon, Monte Carlo playouts have been parallelized to evaluate
a position. As playing a position depends on dices, random dices sequences have
been also evaluate in parallel. As the number of possible moves increases when
dices are doubles, states evaluation can be divided in 2 sub-problems [14] : the
first without double dices and the second with double dices. In other words, they
distinguished states in 2 groups : light states that have small branching factor
and heavy states that have huge branching factor.
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In Scrabble, simulations are restricted inside a directed acyclic graph to
produce existing words [15].

In Poker, betting strategies depends on the gamestate [16] (that can be
Pre-Flop, Flop, River). During these gamestates, players’ hands are consistent
with their actions. Thus simulations are limited to special tracks that are defined
by players’ hands.

These contributions in other stochastic games show that biased sampling
according to particular things of gamestates and regrouping possibilities has
been used to settle efficient MCTS playouts.

3 Regrouping nodes

In this section, we present the use of chance-nodes, move-groups and group-nodes
principles applied to MCTS.

Fig. 1: Common, chance-nodes and move-groups representations.

Figure 1 show the differences between representations of a common tree, a
tree with chance-nodes and a tree with move-groups. With chance-nodes and
move-groups, branching factor reductions can arise. With chance-nodes (related
to a game where possible moves are partly defined by rolling a dice), events
e1 and e2 are selecting possible next nodes. With move-groups, children are
divided between categories (here 3 categories A, B and C ) to perform a smart
descent towards the best leaf. When these categories are defined by the moves
coordinates in the board, move-groups are called group-nodes.

The main loop of MCTS applied to perfect information games is presented
in Alg. 1. It is a statistical search based on 3 steps called selection, expansion
and backpropagation, also guided by random games (i.e. playouts). The tree
expansion is performed to evaluate the current most promising node. The main
loop presented is limited to nbPlayouts iterations but it can be an anytime
process. It can start from an empty tree with its root node only or from a tree



4 Jouandeau et al.

filled by previous MCTS loops. The use of such procedure is consistent if and
only if the root node is not a endgame position (i.e. root is not a solved problem).
This process can lead to the insertion of 1 to nbP layouts nodes. The select

function takes the current tree T as input and performs descent toward the best
node q and returns the move m to produce a new node. Then the expand function
applies m to q and produces qnew. Starting from this new node qnew, a playout
helps to collect statistical information of qnew. Then backpropagation function
insert qnew in the tree T as statistically informed node and backpropagates qnew
results of its parents. If during the descent, this qnew node is a winning leaf,
this leaf is updated and future tree expansions are expected to perform different
descents and select different nodes. According to this exclusion of endgames
inside T , the select function detailed in Alg. 2 always selects node q with at
most 1 move. It selects the best node qbest from all possible moves m from q or
it breaks at the first node (q + m) not in T .

input : T the current tree
output: T expanded with 1 to nbP layouts nodes

for nbP layouts do
( q , m ) ← select ( T ) ;
qnew ← expand ( q , m ) ;
res← playout ( qnew ) ;
backpropagate ( qnew , res ) ;

Algorithm 1: Classical MCTS applied to perfect information games.

input : T the current tree
output: ( q, m ) where q ∈ T and q to expand by applying a move m

q ← root;
while true do

qbest ← {∅} ;
foreach move m from q do

if (q + m) /∈ T then return ( q, m ) ;
qbest ← best ( qbest , (q + m) ) ;

q ← qbest ;

Algorithm 2: Select function of classical MCTS.

Considering stochastic games and modifications of tree’s representation that
are arising with chance-nodes and move-groups usage :

– the select function may distinguish types of nodes.
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– the endgame shortcut assertion is no more true. Thus endgames can be
selected inside select function. It implies modifications in main loop and in
select function.

input : T the current tree
output: T expanded with nbP layouts iterations

for nbP layouts do
( q , m ) ← select ( T ) ;
if m 6= {∅} then

qnew ← expand ( q , m ) ;
res← playout ( qnew ) ;
backpropagate ( qnew , res ) ;

else
res← result ( q ) ;
backpropagate ( q , res ) ;

Algorithm 3: MCTS applied to stochastic games.

The modified main loop is presented in Alg. 3. Even if a descent can lead to
an endgame, stochastic games can lead to different events during the descent,
that should lead to unevaluated parts of T . The selection process is guided by
nodes scores and by stochastic events. Thus the statistical scoring process can be
applied systematically during nbP layouts iterations, to insert 0 to nbP layouts
nodes in T . In such games, expansion, playout and backpropagation are applied
only if the selected move m differs from {∅}.

The modified select function with chance-nodes is presented in Alg. 4. At
each iteration, the state of the node is checked : if it is a chance-node, then
the dice function adds an external event to q. If no move is available from q,
then {∅} is returned as move m to apply. If q is not in T , then q is inserted
and the move returned to apply to q is its first move. Thus each time this node
is selected, it will try to add another move from q before looking for the best
children of q to descend one more time in T .

The modified select function with move-groups is presented in Alg. 5. The
process is divided between 3 cases :

– there is no move from q, that is equivalent to no group available. The process
breaks and the tuple ( q , {∅} ) is returned.

– 1 move-group g exists from q, which means that this group contains at least
1 move. In this case, the process tries to evaluate all possible moves of the
move-group g.

– if 2 or more move-groups exists from q, then the process tries to select the
first group without a move. If all groups have 1 or more moves, then the best
group Mbest is selected and 1 move from this group is considered. If this
move is not in T , then it returns the tuple ( q , m ). This process implies to



6 Jouandeau et al.

input : T the current tree
output: ( q, m ) where q ∈ T and q to expand by applying a move m

q ← root;
while true do

if q is a chance-node then q ← q + dice ( ) ;
else

if no move from q then break ;
if q /∈ T then

insert q in T ;
return ( q , first move from q ) ;

else
qbest ← {∅} ;
foreach move m from q do

if (q + m) /∈ T then return ( q, m ) ;
qbest ← best ( qbest , (q + m) ) ;

q ← qbest ;

return ( q , {∅} ) ;

Algorithm 4: Select function with chance-nodes.

input : T the current tree
output: ( q, m ) where q ∈ T and q to expand by applying a move m

q ← root;
while true do

if no move from q then break ;
if only 1 move-group g exists from q then

qbest ← {∅} ;
foreach move m of g from q do

if (q + m) /∈ T then return ( q, m ) ;
qbest ← best ( qbest , (q + m) ) ;

q ← qbest ;

else
Mbest ← {∅} ;
foreach move-group M from q do

if M∩ T = ∅ then
add one-move of M in T ;
return ( q , m ) ;

Mbest ← best ( M , Mbest ) ;

m← one-move of Mbest ;
if (q + m) /∈ T then return ( q, m ) ;
q ← q + m ;

return ( q , {∅} ) ;

Algorithm 5: Select function with move-groups
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input : T the current tree
output: ( q, m ) where q ∈ T and q to expand by applying a move m

q ← root;
while true do

if no move from q then break ;
qbest ← {∅} ;
foreach possible move m from q do

if m is a classical move then
if (q + m) /∈ T then return ( q, m ) ;
qbest ← best ( qbest , (q + m) ) ;

else if m is a reveal move then
qnew ← revealRandomlyAt ( q, m );
if qnew /∈ T then return ( q, m ) ;
qbest ← best ( qbest , qnew ) ;

q ← qbest ;

return ( q , {∅} ) ;

Algorithm 6: Select function with group-nodes

check the intersection between a move-group and T . The one-move function
defines the policy to generate and add new moves in T .

The modified select function with group-nodes is presented in Alg. 6. Re-
vealing moves are regrouped by position. Each position to reveal leads to different
boards. Thus a board with 3 known pieces with 4 possible moves each and with
10 unrevealed pieces will have 12 children for its known pieces and 10 children
for its unrevealed pieces. As revealing positions can leads to different boards,
possible moves are always recomputed with group-nodes. The select function
returns the first unevaluated classical move or the first unevaluated reveal move
from the current best node in the tree. The function revealRandomlyAt applies
a random reveal at the position m. As revealed pieces will be different, sub-
groups will be also different. Thus the group-nodes regrouping policy produced
an approximate evaluation of groups.

In this paper, we investigate the way that groups constitution influence
MCTS performances in CDC stochastic game. To achieve this, we consider
different regrouping policies and different generating policies inside groups:

– revealed group or unrevealed group : these 2 groups are simply defined on
the board by revealed and unrevealed pieces. Using these 2 groups, we tried
to generate randomly new moves (abrev. move-group-random) and to cycle
over the considered move-group’s elements (abrev. move-group-cycle).

– revealed pieces or unrevealed group : this is equivalent to group-nodes. Un-
revealed pieces are considered randomly inside the unrevealed group and
revealed pieces are considered individually (abrev. group-nodes).



8 Jouandeau et al.

4 Experiments

In the first experiment, we compare the 5 regrouping policies move-groups-
random, move-groups-cycle-R, move-groups-cycle-M, group-nodes and chance-
nodes to a random player and to a reference player rand-mm. The policies
move-groups-cycle-R and move-groups-cycle-M are respectively starting by re-
veal moves and by real moves. Thus move-groups-cycle-R is more dependant on
the number of revealing possibilities than move-groups-cycle-M. The reference
player rand-mm simply plays randomly when pieces are unrevealed and other-
wise applies minimax to find the best move. In our experiments, UCT (abrev.
Upper Confidence bounds applied to Trees) values are computed with

(v/(v + d)) +
√

K ∗ log(n)/(v + d)

with n simulations, v wins, d losses and K equals to 0.3. As capture has been
proven to contribute in better MCTS evaluations [1, 9], captures are preferred
to random moves inside playouts.

As playouts can finish with a draw endgame and are evaluated without heuris-
tic function, we extended the draw rule inside playouts to 640 turns to produce
more informed playouts. Results presented in all tables involve 500 games in
which half are achieved with one player as first and half are achieved with the
other player as first. Games are played with 0.01[sec] per move and with 1[sec]
per move.

Policy Against rand Against rand-mm
win lost draw win lost draw

with 0.01[sec] per move
move-groups-random 194 0 306 90 95 315
move-groups-cycle-R 81 0 419 100 400 0
move-groups-cycle-M 202 0 298 100 150 250
group-nodes 314 0 186 1 238 261
chance-nodes 360 0 140 191 13 296

with 1[sec] per move
move-groups-random 291 0 209 140 42 318
move-groups-cycle-R 64 0 436 0 437 63
move-groups-cycle-M 282 0 218 205 14 281
group-nodes 353 0 147 49 15 436
chance-nodes 393 0 107 249 3 248

Table 1: Games against random-player and random-minimax player.

Results of table 1 confirm that the move-groups-cycle-R policy of cycling on
moves and starting by reveal moves is not a good policy. As similar results are
obtained with move-groups-random and move-groups-cycle-M, the knowledge
introduced with cycling and starting by known pieces is inefficient to do better
than a random selection. Results show that chance-nodes are more effective
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than others with simple playouts (i.e. no heuristic evaluation function inside
playouts).

Policy Against rand-mm
win lost draw

with 0.01[sec] per move
move-group-random-mm 169 1 330
move-group-cycle-R-mm 186 2 312
move-group-cycle-M-mm 166 0 334
group-nodes-mm 24 5 471
chance-nodes-mm 240 0 260

with 1[sec] per move
move-group-random-mm 265 0 235
move-group-cycle-R-mm 290 0 210
move-group-cycle-M-mm 293 0 207
group-nodes-mm 121 0 379
chance-nodes-mm 310 0 190

Table 2: Using minimax at the end.

In the second experiment, we enhanced these 5 policies by using minimax
as the reference player rand-mm do. When all pieces are revealed, enhanced
players apply minimax to find the best move. Policies are used when pieces
are unrevealed and otherwise a minimax search is done. These modified players
move-groups-random-mm, move-groups-cycle-R-mm, move-groups-cycle-M-mm,
group-nodes-mm and chance-nodes-mm are compared to rand-mm player.

Results of table 2 show that adding minimax search in the perfect information
part of games improves all the players. This enhancement makes chance-nodes-
mm the best player with 0.01[sec] and 1[sec] per move. In case of 1[sec] per move,
move-groups-cycle-R-mm and move-groups-cycle-M-mm are closed to chance-
nodes-mm. In all these experiments, rand-mm obtains quasi null scores.

In the third experiment, we evaluate the contribution of chance-nodes by
gradually introducing random moves. The figure 2 shows the performance of
chance-nodes-mm against himself. The second player is weakened with a ran-
dom move during X first turns. Players are evaluated in 500 games, with 1[sec]
per move, from 0 to 35 random moves. It shows that performances are equal
when chance-nodes-mm plays randomly during its 10 first moves. After 10 first
random moves, losts increase and draws decrease. It shows chance-nodes contri-
bution while some unrevealed pieces remain. After 20 turns, the game has more
chance to be fully revealed. It shows that similar gain is achieved in the perfect
information part of the game. As there are 32 unrevealed positions at the begin-
ning of the game, chance-nodes contributes effectively at least in managing 12
unrevealed pieces.
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Fig. 2: chance-nodes-mm with X random plies against chance-nodes-mm.

5 Conclusion

Monte-Carlo Tree Search (MCTS) is a powerful paradigm for perfect informa-
tion games. When considering stochastic games, the tree model that represents
the game has to take chance and a huge branching factor into account. We have
presented 3 ways to regroup nodes and their consequences to MCTS algorithm
and the descent function. We have compared different regrouping policies and
different generating policies in Chinese Dark Chess games. Experiments show
that without heuristic function evaluation, chance-nodes regrouping policy is the
best for the stochastic part of the game and that adding minimax search in the
perfect information part of the game improves all players.
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