
L3M∗Joint Team report

Participation in the 2010 RoboCup SPL league

Vincent HUGEL and Nicolas JOUANDEAU
hugel@lisv.uvsq.fr and n@ai.univ-paris8.fr

∗Les Trois Mousquetaires � Los Tres Mosqueteros � The Three Musketeers

1

Table of Contents

1 Introduction 3

2 Module architecture 4

3 Velocity control for locomotion path planning 4

3.1 Velocity-controlled trajectory to go to the ball . 6

3.2 Velocity-controlled trajectory to align the attacking robot with ball and target . . 8

3.3 Velocity-controlled trajectory to align the defending robot between ball and target 9

4 Obstacle avoidance 9

4.1 Ultra sonar con�guration . 9

4.2 Dealing with obstacle detection . 10

5 Localization 11

6 Vision 12

6.1 L3M Vision Manager . 12

6.2 Vision calibration . 15

6.3 Vision processing . 15

6.3.1 Choosing color space . 15

6.3.2 Image interpretation . 18

7 Individual behaviors 20

8 Collective behaviors 21

9 Future improvements 22

9.1 Solving shortcomings . 22

9.2 More important developments . 22

2

1 Introduction

In 2010 the L3M team participated in the NAO SPL league for the second time. The team was
originally composed of French members and became a joint team with two Spanish Universities
in 2010 after the German Open.

The team is now composed of two French Universities, the University of Versailles (UVSQ) repre-
sented by the LISV Laboratory1, the University Paris 8 (UP8) represented by the LIASD Labora-
tory2, two Spanish Universities, la Universidad de Murcia, represented by el Grupo de Investigación
de Ingeniería Aplicada (GIIA), la Universidad Politécnica de Valencia, represented by el Instituto
Universitario de Automática e Informática Industrial (AI2), and one French Engineering School,
ISTY, that is a Science and Technology Engineering School that depends on the University of
Versailles. The researchers involved this year were Vincent Hugel (team leader, LISV), Nicolas
Jouandeau (LIASD), Pierre Blazevic (head of ISTY), Patrick Bonnin (ISTY), Humberto Martínez
Barberá (GIIA), Juan Francisco Blanes Noguera (AI2). The team students were Juan Jose Alcaraz
Jimenez (GIIA), Manuel Muñoz Alcobendas (AI2), Pau Muñoz Benavent (AI2), Aldenis Garcia
Martinez (UP8), Loïc Thimon (UP8) and Vincent Clavel (ISTY).

The French part of the team also participated in the 2010 RomeCup and the 2010 German Open
that took place in Magdeburg. These participations were very useful to focus on the real problems
of vision tuning and to �x them.

In RoboCup 2010 the L3M team won 2 games, did 1 draw and lost 3 games, see table 1. L3M
scored 5 goals. This was enough to pass the �rst round but not the second one. L3M ranked 3rd
in the second pool out of 4 teams. The �nal ranking of our team is between the 9th and the 12th
place, at the end of the �rst half, out of 23 teams in competition. This is not a bad result taking
into account the high level of the tournament, and the di�erence of human and �nancial resources
between teams.

Game Teams Score
1st L3M - HTWK 0-2
2nd L3M - Northern Bites 2-0
3rd L3M - Zadeat 2-0
4th L3M - CHITA Hominids 1-1
5th L3M - Austin Villa 0-5
6th L3M - CMurfs 0-2

Table 1: L3M soccer games results

This second participation was the opportunity to set up a joint team and to improve the behaviors
of last year [1].

1Laboratoire d'Ingénierie des Systèmes de Versailles, Laboratory specialized in System Engineering, Robotics and Mechatronics
2Advanced Computer Science Laboratory of Saint Denis, Laboratory specialized in computer science

3

2 Module architecture

In addition to the two modules that were used in the embedded software of 2009, namely mvt
module and vision module [1], a new module � named comm � was created to deal with the
communication with the gamecontroller and the communication between team robots. The UDP
protocol in burst mode is used for communications.

The comm module is waiting for messages from the gamecontroller. Once a message is received it
is analyzed and useful information is copied into a shared memory. This is done simply by calling
the Aldebaran InsertData method on a memory proxy whose type is ALPtr < ALMemoryProxy >.
The information used so far from gamecontroller are game state, team colour, kicko� team, penalty,
and score. Shared memory is updated when a new value is received from the gamecontroller.

In the mvt module callbacks are de�ned and being subscribed, i.e. associated with changes in
shared memory. The Aldebaran method subscribeToMicroEvent is used on a memory proxy to do
that. There are four callbacks, to deal separately with game state, team colour, kicko� team and
penalty. Score information is not used yet. When a new value is written in the shared memory by
the comm module, the appropriate callback is run in the mvt module to copy the information in
the local memory space so that the decision engine inside the mvt module can update the robot's
state with the last information provided by the gamecontroller.

The comm module is also running threads that are awaiting messages from other robots. Messages
received are copied into shared memory for further use by the mvt module. The comm module
contains bound methods that can be used by the mvt module to send messages to other robots.
The sending method calls a sendto function for each of the robots. The broadcast sending mode
was not used because it posed serious problems we could not �x.

3 Velocity control for locomotion path planning

Last year the L3M robots were not programmed to track and follow the ball in real time. This
year our robots can track the ball and head for it while adjusting their path towards the ball
taking into account the relative position of the poles that were detected and refreshed. First we
used the position control walking primitives from Aldebaran to update the path to be followed by
the robot in real time. Unfortunately these primitives were responsible for frequent and strange
jolts that nearly made the robot collapse. Path tracking in these conditions was not reliable. That
is why velocity control walking primitives from Aldebaran were utilized instead.

Three kinds of path tracking algorithms were designed. The �rst path tracking algorithm was
designed to head for the ball and to halt when arrived close to the ball with one of the feet in
front of the ball. The objective of the second path tracking behavior is to align the robot with
the ball-target direction behind the ball in the direction of the target. This is useful to attack the
opponent goal when it is de�ned as target, but it can also be useful to get the robot aligned with
any other target like a virtual point for placement purposes. The third and last path tracking
behavior consists of a aligning the robot with the ball and the target but the robot must place
itself between the ball and the target. This is obviously useful for defense purposes.

4

The three functions UpdateGotoBall(), UpdateAlignedTarget(), UpdateAlignedTargetForDefense()
given below are called by the behavior decision engine to update the path that the robot must
follow. All these three functions �rst call the UpdatePerceptionServoHeadToBall)() function that
is used to servo the head to the ball. This function calls the DoPerception() function that gets
visual information from the vision module and calculates angles and distance to objects detected
in the image.

void Behavior_robot::UpdatePerceptionServoHeadToBall(void) {
DoPerception();
// servo head
if (ball_seen) {

PtrMvt->fMotion->post.angleInterpolationWithSpeed(std::string("HeadYaw"),
ball_horiz_angle_for_servo,0.85);
PtrMvt->fMotion->post.angleInterpolationWithSpeed(std::string("HeadPitch"),
ball_vert_angle_for_servo,0.85);

}
}

void Behavior_robot::UpdateGotoBall(void) {
UpdatePerceptionServoHeadToBall();
if ((ST_nb_opp_poles > 0) && (ball_distance < 1.2))

trajBallDone = UpdateTrajectoryGotoBallAlignedTarget(opp_goal_horiz_angle);
else

trajBallDone = UpdateTrajectoryGotoBall();
if (ball_distance > 0.45)

obstacleAvoidance();

DealWithSaturation();
PtrMvt->fMotion->setWalkTargetVelocity (fx, fy, ftheta, freq);

}

When the distance to the ball is less than 1.2 [m], and at least one opponent pole has been
detected recently or a few seconds earlier and stored in the pole history, there is a subcall to the
function that deals with aligning the robot with ball and target to attack the opponent goal. If
no pole was detected the robot simply goes to the ball. In case the robot approaches the ball at
a distance less than 0.45 [m], the obstacle avoidance procedure is run. For velocity control we
use the setWalkTargetVelocity() from Aldebaran Motion module that requires four parameters as
inputs that we named fx, fy, fθ, and freq.

• fx is the step length along x-axis as a fraction of maximal step length along x. A negative
value means a backward step. The maximal step length is set to 0.04 [m].

• fy is the step length along y-axis as a fraction of maximal step length along y. A negative
value means a sideways step to the right. The maximal step length is set to 0.04 [m].

• fθ is the angle between the feet as a fraction of maximal step angle. A positive value result
in a left turn(anti-clockwise) and a negative value results in a right turn(clockwise). The
maximal step angle is set to 0.698 [rad], which is 40 [deg].

5

• freq is the step frequency as a fraction of linear interpolation between minimal step frequency
and maximal step frequency. One cycle is considered to be a phase of double leg support
followed by a phase of single leg support.

fx, fy, fθ are internal variables de�ned as object members whose range is [−1, 1]. freq range
is [0, 1]. The freq parameter was always set to 1. The DealWithSaturation() function makes
it sure that fx and fy parameters for velocity control stay inside their respective range while
respecting their proportion relative to each other. The velocity-controlled trajectory is updated in
the UpdateTrajectoryGotoBall() � described in 3.1 � and UpdateTrajectoryGotoBallAlignedTarget()
� described in 3.2.

void Behavior_robot::UpdateAlignedTarget(void) {
UpdatePerceptionServoHeadToBall();
trajBallDone = UpdateTrajectoryGotoBallAlignedTarget(angle_target);
DealWithSaturation();
PtrMvt->fMotion->setWalkTargetVelocity (fx, fy, ftheta, freq);

}

This function always calls UpdateTrajectoryGotoBallAlignedTarget() described in section 3.2.

void Behavior_robot::UpdateAlignedTargetForDefense(void) {
UpdatePerceptionServoHeadToBall();
trajBallDone = UpdateTrajectoryGotoBallAlignedTargetForDefense(angle_target);
DealWithSaturation();
PtrMvt->fMotion->setWalkTargetVelocity (fx, fy, ftheta, freq);

}

This function always calls UpdateTrajectoryGotoBallAlignedTargetForDefense() described in sec-
tion 3.3.

3.1 Velocity-controlled trajectory to go to the ball

This section describes the algorithm used in the UpdateTrajectoryGotoBall() function.

In the case where the robot does not see the ball or has not seen it after the refreshment period
has elapsed, the robot halts � fx, fy and fθ are set to 0 � if it is at a distance to the ball less
than 2 [m] or if it is rotating � the angular velocity rate component fθ is not 0. It the robot is not
rotating and if it is enough far away from the ball, the robot continues to walk according to the
last values set in fx and fy velocity parameters, this is to have a chance to catch the ball while
walking before halting for searching the ball again.

In case the robot has detected the ball the following instructions are executed:

• the robot checks if it has arrived close to the ball. The test is the following:

|dB. cosαhorizB | < dcloseB and |dB. sinαhorizB | < dcloseB (1)

6

where dB is the distance to the ball, αhorizB the horizontal angle between the robot's longitu-
dinal axis and the ball, and dcloseB is a �xed threshold under which the ball is considered as
close enough for the robot to be arrived at the ball. dcloseB = 0.25 [m].

• the robot calculates the target angle, namely αhorizT , it needs to turn to have its longitudinal
axis aligned with the target point. The default value of the target angle is the ball horizontal
angle. However it is possible to specify that the robot arrives at the ball with the left or right
foot in front of it in order to be ready for kicking the ball. In this case the target angle is
modi�ed when the robot is at a distance from the ball below 0.6 [m] by adding a correction
angle to the ball horizontal angle. This correction angle is obtained by considering a virtual
target point for the robot. This target point is at 0.05 [m] from the ball perpendicular to ball
heading direction. The target point will be on the right of the ball if the kicking foot selected
is the left foot and vice-versa.

• the robot checks if it only needs to execute a rotation motion. This will be the case once
it has arrived close to the ball, or when the ball horizontal angle is greater than 85 [deg] in
absolute value. In this last case it is preferable to rotate �rst before heading for the ball.

• In case only a rotation motion is required, fx and fy are set to 0, otherwise they are adjusted
as follows:

β = (dB − dcloseB)/(ddecB − dcloseB)

if(β < 0.2) β = 0.2

fx = β. cosαhorizT

fy = β. sinαhorizT

where ddecB is a distance under which the robot will start to decelerate because the weight
coe�cient β will be less than 1. ddecB is set to 0.47 [m]. The weight coe�cient β is saturated
to minimal value of 0.2 to prevent the robot from stepping on the spot.

• Next, a minimal angle αmin and a maximal angle αmax are used to deal with the target angle
to turn. If the target angle is below αmin then fy and fθ are set to 0. This means that only
forward velocity is used for the trajectory to the ball. If the target angle is greater than αmax
the target angle is saturated to αmax. αmin is set to 10 [deg] when one of the feet has been
selected for positioning and kicking. When there is no requirement for positioning one of the
feet for kicking, αmin is set to 16 [deg] when the ball is very close at a distance of 0.17 [m].

• The minimal angle is subtracted from the target angle, taking sign into account. To get a
value between 0 and 1− αmin/αmax the target angle is then divided by αmax.

• fθ is then calculated with a parabolic pro�le as follows:

fθ = kθ.α
horiz
T .|αhorizT | (2)

where kθ is a coe�cient used to scaled up/down the parabolic shape. kθ is �xed to 1.5. To
prevent the robot from stepping on the spot, a minimal value of fθ is de�ned as:

fθmin = αmin/(3.max_step_angle) (3)

7

It is used as follows:

if fθ < 0.0

if fθ >= −fθmin fθ = −fθmin
else if fθ <= fθmin fθ = fθmin

• the function returns true when the ball is in sight and parameters fx, fy and fθ are 0.

3.2 Velocity-controlled trajectory to align the attacking robot with ball and target

This section describes the algorithm used in the UpdateTrajectoryGotoBallAlignedTarget() func-
tion. This function requires a target angle as input, named αhorizT . Usually this angle is the angle
between the robot's longitudinal axis and the opponent goal direction.

The algorithm is similar to the one described previously. In case the robot has detected the ball
the following instructions are executed:

• the robot checks if it has arrived close to the ball.

• the robot updates the target angle, namely αhorizT , as:

αhorizT = 2.αhorizB − αhorizT (4)

• αhorizT is saturated between −60 [deg] and 60 [deg]. Because the angle is between −180 [deg]
and 180 [deg], there is a risk of sideways oscillation when the angle changes sign around
180 [deg]. This must be taken into account in the angle saturation to prevent the robot from
oscillating.

• if the robot has NOT arrived close to the ball, the strategy for the robot consists of moving
along a curve while changing the robot's heading so that it converges to the ball-target
direction:

� if |αhorizT | < 48 [deg] then fx and fy are set in the same way as for tracking the ball only.
The angle used for fx and fy is αhorizT .

� Otherwise fx and fy are set to 0. Only a rotation motion will be triggered.

� The angle used for calculating fθ next is set to ball horizontal angle.

• if the robot has arrived close to the ball,

� angle di�erence ∆α = αhorizT − αhorizB is calculated.

� if |∆α| < 12 [deg] then fx and fy are set to 0.

� else

∗ ∆α is saturated between −π/2 and π/2.
∗ fx = kx. sin ∆α. sinαhorizB

∗ fy = −ky. sin ∆α. cosαhorizB

with kx = ky = 1.

� The angle used for calculating fθ next is set to the target angle given as input to the
function.

• fθ is calculated as in section 3.1 with a scaling coe�cient kθ = 0.6.

8

3.3 Velocity-controlled trajectory to align the defending robot between ball and

target

This section describes the algorithm used in the UpdateTrajectoryGotoBallAlignedTargetForDe-
fense() function. This function requires a target angle as input. The target point here can be the
own goal center. In this situation, the robot must defend its own �eld so the robot will place itself
between the ball and the target, and approach the ball.

The algorithm is the same as in section 3.2, with kx = ky = 1.5.

4 Obstacle avoidance

The obstacle avoidance implementation is very simple. To avoid obstacles the robot uses its two
ultra-sonar sensors (US) located on the chest. There is one sensor on the right and another one
on the left, and they point a little bit outwards.

4.1 Ultra sonar con�guration

The devices used to get access to US sensor values are the following:

fSensorKeys.push_back(std::string("Device/SubDeviceList/US/Left/Sensor/Value"));
fSensorKeys.push_back(std::string("Device/SubDeviceList/US/Right/Sensor/Value"));

The source code used to enable US sensors using a non-periodic con�guration � this means that
a request for sensor reading has to be sent � is given below:

void MovementModule::EnableUS() {
int DCMtime;
//Get Time
try {

DCMtime = dcmProxy->getTime(0);
} catch (const AL::ALError &e) {

throw ALERROR(getName(),
"EnableUS()", "Error on DCM getTime : " + e.toString());

}

USCommands.arraySetSize(3);
USCommands[0] = std::string("US/Actuator/Value");
USCommands[1] = std::string("Merge");
USCommands[2].arraySetSize(1);
USCommands[2][0].arraySetSize(2);
USCommands[2][0][0]= 4.0;
USCommands[2][0][1]= DCMtime;

try {

9

dcmProxy->set(USCommands);
} catch (const AL::ALError &e) {

throw ALERROR(getName(),
"EnableUS()", "Error on sending US to DCM : " + e.toString());

}
}

Sometimes however the sensors seem not to work any more. It is possible to disable them and
enable them again using this non periodic con�guration during the play.

US sensor values are read every 100 [ms] using GetValues() method on fast memory access pointer
in a post-DCM-thread3 callback. The post-DCM-thread callback runs every 10 [ms]. The con�g-
uration for US sensor reading was non periodic. This means that a request for US sensor values
is sent in the post-DCM-thread every 100 [ms] after US sensor values have been read:

int DCMtime;
//Get Time
try {

DCMtime = dcmProxy->getTime(0);
} catch (const AL::ALError &e) {

throw ALERROR(getName(),
"callbackEveryCycle()", "Error on DCM getTime : " + e.toString());

}

USCommands[2][0][1] = DCMtime;
try {

dcmProxy->set(USCommands);
} catch (const AL::ALError &e) {

throw ALERROR(getName(),
"callbackEveryCycle()", "Error with DCM set : " + e.toString());

}

4.2 Dealing with obstacle detection

An obstacle is considered as detected if both sensors give a value greater than 0.1 [m] and if at
least one of them give a value less than 0.45 [m]. Then to determine whether the obstacle is on
the left or on the right both values are compared. If the di�erence between both values is small,
the obstacle is considered to be in front of the robot.

void Behavior_robot::obstacleAvoidance() {
float USLeft = PtrMvt->sensorValues[4];
float USRight = PtrMvt->sensorValues[5];

3extract from Aldebaran documentation. DCM stands for Device Communication Manager. The DCM is the NAO software module,
part of the NaoQi system, that is in charge of the communication with every electronic devices in the robot (boards, sensors, actuators
...) with the only exception of the sound (in or out) and the camera. It manages the main communication line: the USB link with
the ChestBoard. [...]. Modules like Motion and Leds directly send commands to actuators using the DCM, while extractors and other
modules use sensor results returned by the DCM in ALMemory

10

if ((USLeft < 0.45 || USRight < 0.45) && (USLeft > 0.1 && USRight > 0.1)) {
//If the robot is close to an obstacle

if (USRight < USLeft) { //The obstacle is on the right
fx = cos(60.0*convert_from_deg_to_rad);
fy = sin(60.0*convert_from_deg_to_rad);

} else { //The obstacle is on the left
fx = cos(-60.0*convert_from_deg_to_rad);
fy = sin(-60.0*convert_from_deg_to_rad);

}
if (fabs(USRight-USLeft) < 0.02) {
//The obstacle is in front of the robot

fx=0;
fy=1;

}
}

}

To avoid the obstacle when it is on the right or on the left, the obstacle avoidance function
overwrites fx and fy with a ±60 [deg] oblique change of direction.

This strategy was enough to avoid other robots. Of course it would be useful to use vision feedback
to detect obstacles more precisely, especially robots lying on the �oor. This will be done in the
next future.

5 Localization

The localization used was only based on poles. White lines are not used yet in the localization
process. The robot detects poles in the image and stores information of distance and horizontal
angle for two blue poles and two yellow poles. The respective positions of detected poles relative
to the walking robot are updated thanks to the robot's odometry.

When 2 poles of the same colour are stored and a new pole with similar colour is detected, it is
compared with the 2 poles already in memory. When 2 poles are detected they are �rst being
compared to check if they can be considered as the same. The comparison consists of calculating
the distance between the poles using horizontal angle and distance and applying a threshold
distance of approximately one third of the real goal pole inter-distance.

Then 3 cases may arise. The �rst case is when there is no pole in the memory pool, the second
case assumes there is only pole in the memory pool, and the last case appears when there are 2
poles in the pool.

In the �rst case, the new pole is immediately stored.

In the second case, if the new pole is likely to be the same as the pole already recently stored P1,
the P1 is replaced by a pole with greatest distance and averaged horizontal angle. If P1 is too old
the new pole replaces P1. If the new pole cannot be considered as the same as the pole already
stored, the new pole is stored as the second pole of the same goal.

11

In the last case, the new pole Pdet is compared with the �rst pole stored P1. If the new pole is likely
to be the same as P1, P1 is replaced by a pole with greatest distance and averaged horizontal angle.
If P1 is too old the new pole replaces P1. If Pdet is not likely to be the same as P1, it is compared
with P2 and the same checking takes place. In the case where Pdet cannot match P1 neither P2

three situations may arise: Pdet will replace P1, Pdet will replace P2, or P1 and P2 will remain
unchanged. The decision in this case consists of selecting the two poles whose inter-distance is
closest to the real goal pole inter-distance, as described below:

• if |P1Pdet − dP | < |P1P2 − dP |

• then

� if |P2Pdet − dP | < |P1Pdet − dP |
� then Pdet replaces P1

� else Pdet replaces P2

• else

� if |P2Pdet − dP | < |P1P2 − dP |
� then Pdet replaces P1

� else P1 and P2 unchanged

where dP is the real distance between goal poles. dP = 1.5 [m].

6 Vision

6.1 L3M Vision Manager

In our previous L3M report [1], we explained the pixel classi�cation we were commonly using. The
technique was based on selecting special sets of images based on human expertise. Classi�cation
of each pixel colour for each object type was done o�ine and manually. It required more than
one hour to �x all types of classi�cation (including ball, yellow and blue poles and green at least).
As colour pixel classi�cation highly depends on lighting conditions that can strongly vary within
10 minutes, the time needed for such classi�cation was a real drawback of our vision system. To
accelerate our camera tunning parameters procedure and our colour classi�cation procedure, we
developed a new L3MVisionManager (like other teams that are using very attractive calibration
interfaces [4, 5]). The goal was to develop a client vision interface, that allows us:

• to tune camera parameters (like telepathe, but where telepathe shows camera outputs with
160× 120 unresizable window, we would like to have 640× 480 or more, with centering and
zooming possibilities),

• to realize on-line pixel colour classi�cation

• to enhance previously de�ned colour classi�cation (while keeping or modifying camera pa-
rameters)

12

• to see vision-system analysis in real time.

Figure 1 shows the main tabs of the L3MVisionManager. The �rst tab is labeled Cam. It allows
us to set camera parameters on a wide screen. The zoom enables a neat view of special details.
When the checkbox set-zoom-center is checked, each click centers the camera view. By checking
the show-zoom-center box, the zoom center is shown with a green cross. Zooming in (respect.
out) is accessible via the press button labeled zoom-in (respect. zoom-out). Zooming functions
are also bound to mouse wheel to accelerate zoom handling. By such mechanism, it is possible to
zoom in or out in the current view and to move zoom centering in the image. Figure 2 shows a
zoom-in view with the green centering cross.

The second tab is used to construct the LUT. The previous zoom-in and zoom-out mechanism
is again available. Pixels that are inside a range of three channels values can be selected. Such
selection is centered on the last pixel selected by mouse clicking. To increase possibilities of pixels
groups construction, a group can be de�ned with single pixel surrounding and with multiple pixels
surrounding. Pixels groups can also be set in one single image or with multiple images. By selecting
multiple images pixels group with single pixel surrounding, the selection stretches naturally to
colour shapes. This function appears to be very useful because in kVGA, colour variations are
very fast and catching all pixels types associated with a shape is di�cult. As surrounding can be
adjusted, it allows the user to �t surrounding values to ful�ll a shape. Surrounding values can
be grown, reduced, translated to upper or lower values. When applying such modi�cations to
surrounding values, modi�cations are discretized into steps that are composed with press buttons
labeled 1,2,4 and 8. Pixels groups can be added to or subtracted from the current LUT. Five
pixel-types, that correspond to ball, blue-goal, yellow-goal, green and white, can be set. LUT
can be saved in a binary �le with a header that contains all camera parameters. When loading a
�le that contains a previously de�ned LUT, it is possible to load camera parameters or not. The
resulting colour pixel image can be viewed in the main window (i.e. �gure 3 top) or in a smaller
window on the right while the original appears in the main window (i.e. �gure 3 bottom).

The third tab presented in Figure 4 shows the resulting interpretation of the scene in real time.
Small blue circles show the �eld's limits, white boxes are places where poles can be, horizontal
blue bars show blue pole bases, big blue circles with center show ball detection (knowing that
circle's radius corresponds to ball's radius) and yellow values represent the distance from head to
the virtual horizontal plane passing through the camera the center, and the distance from head
to the virtual horizontal plane passing through the bottom of the current camera view (available
only if behavior is active, otherwise it displays null values as in this case).

For the implementation of these new tool functionalities, code is shared between VisionModule
(embedded executions) and L3MVisionManager (remote executions, i.e. on a personal computer).
To view camera information grabbed in the NAO, a new vision-service is started inside Vision-
Module. Figure 5 shows our client-server architecture where embedded functions are waiting for
incoming requests of getCameraParams, setCameraParams, getImage and getAdditionnalInfos.

13

Figure 1: Three main tabs of L3MVisionManager. The �rst tab shows the tuning camera parameters interface, the
second shows the colour classi�cation interface and the third shows the realtime vision system analysis interface.
The L3MVisionManager contains four tabs, respectively labeled Cam, Lut, Vis and Infos. The fourth tab (not
shown here) summarizes logs in the bu�ered text area.

Such an architecture allows us to minimize the cpu usage of embedded modules and then to de-

14

Figure 2: Here is a zoom-in view. The green cross shows the center of the view. This cross helps the user centering
the view in accordance with its desires. The cross can be displayed or hidden.

crease response time for each getImage(). As time for sharing camera images is time consuming,
it is possible to simultaneously connect only one client. Clients follow a communication protocol
with the vision server that is waiting for requests. As time needed to grab a new image in kVGA
takes less than 10ms, the transfer of such an image takes approximatively 60ms, and its interpre-
tation presented in �gure 4 takes less than 10ms on a personal computer. Clients send a request
for a new image every 100ms (�xing the frame rate of L3MVisionManager to 10 fps).

6.2 Vision calibration

According to our previous report [1], we started from the procedure that stands for setting camera
parameters, enhanced with sharpness (that is set to 2 to help distinguish objects clearly, and
minimize objects distortions regarding LUT characteristics). The whole parameters set is saved
in the LUT-�le generated with our L3MVisionManager. At each start, the VisionModule loads
this LUT-�le and sets all camera parameters. This procedure allows us to link camera parameters
automatically with LUT characteristics that de�ne pixels included in the LUT.

6.3 Vision processing

6.3.1 Choosing color space

As in our previous version, the vision module is in charge of objects identi�cation, that can be
retrieved by other modules. Again we timed the getImage() that has greatly changed with the
new naoqi version (now v1.6.0). Tables 2 and 3 show averages of camera's data access while using
naoqi functions. For each column, the left part shows average, and the right part gives standard
deviation. Classical color space are presented where hsy is an embedded version mixing hsv and
hsl color spaces and where yuv422 is the only native color space.

15

Figure 3: The resulting colour pixel image can be displayed in the main window (see top view) or in the right
window (see bottom view).

Figure 4: The resulting interpretation of the scene appears in real time.

16

ALModule

VisionModule
LUT: char*
grabImage (_out: Img*): int
interpreteImage (_in: Img*): void
getCharData (_data_id: int): char
getIntData (_data_id: int): int
getFloatData (_data_id: int): float

LUT-file

L3MVM
LUT: char*
timerEventLoop (): event
showImage(_ori: Img *, _over: Img *, _right: Img *): int

L3MVM-com
server: struct sockaddr_in
sock_fd: int
srvStart (_port: int): bool
sendParam (): bool
sendFrame (_file: Img*): bool
sendFloorDist (_dist_id: int): float
connect (_host: char*, _port: int): bool
disconnect (): bool
close (): bool
getParam (_param_id: int): bool
setParam (_param_id: int): bool
getFrame (_img: Img*): bool
getFloorDist (_data_id: int): bool

VisionInterpretation

Figure 5: The L3MVM architecture makes it possible to share code between embedded vision module (i.e. Vision-
Module class) and IHM vision manager interface (i.e. L3MVM class). The L3MVM-com class is dedicated to unify
communications between client and server. It implements all client and server functions to set parameters and test
vision functions. The VisionModule is using server functions when L3MVM uses the client parts. VisionInterpre-
tation class contains all interpretation treatments. It is used in both client and server parts. Such a mechanism
reduces the time needed by L3MVisionManager to show interpretation results, by minimizing embedded workload.
In L3MVM class, the timerEventLoop automatically and periodically generates one getFrame event that leads to
display the received image. Depending on VisionInterpretation functions requested, this image is displayed after
treatment and interpretation. Such an architecture also needs the same LUT �le in both client/server parts (i.e.
L3MVM/VisionModule).

Table 2: times in ms to get, copy and release a kVGA image using main color spaces

color space getImage() copy releaseImage()

yuv422 < 0.001 +/-< 0.001 0.230 +/-0.077 0.641× 10−3 +/-0.215× 10−3

yuv 0.055 +/-0.019 0.052 +/-0.019 0.053× 10−3 +/-0.053× 10−3

hsy 0.147 +/-0.049 0.048 +/-0.016 0.047× 10−3 +/-0.047× 10−3

rgb 0.095 +/-0.031 0.049 +/-0.016 0.042× 10−3 +/-0.042× 10−3

Table 2 presents basic operators of image processing. The �rst and the last operators (i.e.
getImage() and releaseImage()) are directly called from naoqi. The operator named copy

17

is transforming input colors into CLUT entries. For yuv422 color space, this means that data are
unpacked and transformed. Table 2 shows that yuv422 is the fastest but also shows that copy
operator is highly time consuming. For all color spaces, releaseImage() is negligible even if it
takes 3 times more for non native color spaces.

Table 3: times in ms to grab kVGA image using main color spaces

color space grab with copy grab without copy
yuv422 0.231 +/-0.077 0.001 +/-< 0.001
yuv 0.107 +/-0.038 0.055 +/-0.019
hsy 0.195 +/-0.065 0.147 +/-0.049
rgb 0.144 +/-0.047 0.095 +/-0.031

Table 3 shows the time di�erence between simple image grabbing and image grabbing with infor-
mation bu�ering to CLUT entries space. It shows that the bu�ering process takes approximatively
50ms except for the yuv422 color space that takes around 4 times more. This lead us to use the
yuv422 color space without bu�ering.

6.3.2 Image interpretation

Based on a pixel classi�cation, the image interpretation is done by subsampling a yuv422 image to
obtain an acceptable processing time (i.e. close to 20ms). Our vision process achieves a vertical
segmentation directly from the yuv422 image (similar way to other teams like [3] that wisely uses
such segmentation). The process is divided in di�erent steps and a subsampling grid is de�ned
for each step.

• �rst, we set the convex hull of the soccer �eld (i.e. based on the green shape identi�ed by
green entries in the CLUT). Then the convex hull is compared to the green shape to de�ne
possible poles in the image.

• second, inside the convex hull, ball colour shapes are collected thanks to vertical segments,
and according to a threshold, segments are regrouped to de�ne multiple ball regions. Each ball
region is sampled to be ordered in a list by size with others. Each ball region is associated
with its ball pixel density, moments for shape identi�cation and pixel-types surroundings
informations. With all these informations, each ball region can be subclassed in the ordered
list. The best ball region is considered as the real ball in the image.

• �nally, possible poles boxes are subsampled. Each possible pole is associated with a pole
colour density, moments for shape identi�cation, pole's tilt and surroundings informations of
their base. The best pole is considered as the real pole in the image. The process is able to
select two poles of the same colour, identifying only one pole if there is one in front of NAO
and two poles if there are two.

This process is parametrized by four subsampling grids : the �rst sets the green subsampling, the
second sets possible ball regions subsampling inside the green region, the next sets each ball region
subsampling to �x each ball region characteristics and the last sets each possible pole subsampling
to �x each pole's characteristics.

18

Table 4: subsampling times in ms while identifying heights of �eld pixel-types

subsampling 1 2 4 8 16 32

1 193.0 2.6 108.7 20.5 48.1 1.1 23.7 < 1 11.7 < 1 5.8 < 1

2 96.3 1.3 51.0 4.7 23.8 < 1 12.0 < 1 6.0 < 1 2.8 < 1

4 48.4 < 1 23.6 < 1 11.9 < 1 6.1 < 1 3.0 < 1 1.6 < 1

8 24.2 < 1 11.8 < 1 6.1 < 1 3.1 < 1 1.5 < 1 <1 < 1

Table 5: subsampling times in ms while computing the convex hull of �eld pixel-types

subsampling 1 2 4 8 16 32

1 210.4 16.1 95.1 7.5 47.9 7.5 24.1 10.1 14.5 4.2 7.1 2.9

2 98.6 8.8 47.9 5.1 24.2 6.6 12.2 7.7 7.4 2.6 3.1 < 1

4 49.5 8.6 24.2 7.5 12.3 7.7 7.6 27.2 4.3 2.3 2.8 2.2

8 25.2 12.0 12.5 9.7 6.3 8.5 3.2 3.8 1.7 < 1 <1 < 1

Table 6: subsampling times in ms while computing moments of each pixel-types

situation 1 2 4 8 16 32

�rst 200.1 2.4 100.5 5.3 58.5 4.7 26.9 4.9 12.2 < 1 6.2 < 1

second 228.7 18.3 104.8 1.0 52.3 1.2 26.3 < 1 13.2 < 1 6.3 < 1

Table 7: subsampling times in ms for vertical ball segmentation inside �eld convex hull

subsampling 1 2 4 8 16 32

1 186.2 < 1 93.1 < 1 47.0 1.2 23.5 < 1 11.5 < 1 5.7 < 1

2 186.4 < 1 93.0 1.0 46.6 < 1 23.4 < 1 11.8 < 1 5.8 < 1

4 202.1 19.2 94.5 3.7 46.8 < 1 23.2 < 1 12.3 < 1 5.8 < 1

8 186.2 1.2 106.7 8.5 46.8 < 1 23.4 < 1 11.7 < 1 5.7 < 1

Table 8: subsampling times in ms while computing density of each pixel-types

situation (1, 1) (1, 2) (2, 2) (2, 4) (4, 4) (4, 8)
second 211.5 < 1 104.2 1.3 52.2 < 1 26.3 < 1 14.5 3.2 7.7 3.4

Table 4 shows the time spent to extract the green pixel-type heights in a kVGA image. First column
(and respect. �rst line) indicates the vertical (respect. horizontal) subsampling value used. A value
of 2 means that half columns (or lines) are considered. Table 5 shows the additional time needed
to compute the convex hull of green pixel-type heights. In Tables 4 and 5, the �rst column shows
average time, and the second column gives standard deviation. Based on these results, we chose
subsampling (8, 2) so that 1 in 8 columns and 1 in 2 lines are scanned.

Table 6 shows times to compute inertial moments of each pixel type in the entire image. It shows
that such an operation is time consuming for two classical situations: the �rst that contains only
one ball and the second that contains one ball and one pole. In this case, moments are computed
for each pixel type, which is useless (at least for the green parts). Situations first and second
contains close objects that gives us computing time needed for a classical view with close objects

19

Figure 6: A simple ball on the green �eld.

(like in Figure 6). Results show that such operations have to be reduced to local area that are
candidates to shape identi�cation like a ball and a pole. Our previous (8, 2) choice is maintained
and puts us in the 8th column of this table. These times indicate an upper bound of the time
needed to compute ball moments.

Table 7 shows times needed to compute the convex hull of the green and to regroup ball vertical
segments inside the hull. As segments are checked between their neighbors vertically, it shows that
a vertical subsampling is ine�cient. The horizontal subsampling takes less columns into account,
so generates less segments and have better results than the vertical one. Again, staying in the 8th
column is fair enough. (8, 1) is preferred to (8, 2) and others whereas a vertical subsampling of 1
is more precise that others.

Table 8 shows times needed to perform all treatments, including the �nal step, that subsamples
possible poles boxes. Using the �rst situation makes the same results as table 6 (logic to a situation
without pole). The subsampling mentioned here is �tted on the rectangular shape of axis aligned
boxes. Finally, subsampling poles with (4, 4) is considered as admissible.

Considering all these subsampling parameters, an important question is to know the quality of
the resulting image processing provided. For each step, we have chosen the most admissible value
with the better possible quality. The �nal time of 14.5ms (with more or less 3.3ms) gives us a
maximum time needed for image processing. Figure 4 shows the result of such processing, where
poles boxes candidates are noti�ed by white rectangles, pole bases by horizontal blue segments
and balls by big blue circles.

7 Individual behaviors

The robot can search for and detect ball and poles, attack the opponent goal and defend its own
goal by turning about the ball. It can kick the ball more or less quickly.

The robot starts to look for the ball by moving its head then by turning in place. Once it has
found the ball the robot goes to it. When only the ball has been detected, the robot follows the
trajectory described in section 3.1. When one opponent pole has been detected the robot will
curve its trajectory to align its longitudinal axis with the ball and the opponent pole (see section
3.2). When two opponent poles have been detected the robot will curve its trajectory towards the
line joining the ball and the goal center � middle of the two poles, this is done when the robot

20

is not too far away from the ball. Once arrived at the ball if the robot has two opponent poles
stored in memory it switches to the kicking procedure. If it has only one opponent pole in sight
or none in sight it starts to scan with its head to look for opponent poles. After scan if there is
no pole the robot turns about the ball by 90 [deg] and start head scanning again. If there is only
one opponent pole, the robot aligns itself with the ball and the pole, then the kicking procedure
is triggered.

The kicking procedure �rst consists of looking down at the feet to check if the ball is close enough.
If not the robot moves to get closer. If the robot is enough close to the ball, the lateral distance
between the ball and closest foot to the ball is calculated (this is done in pixel units right in the
image), and the robot moves sideways to place its closest foot in front of the ball. The robot is
then ready to kick the ball. The kicking motion was de�ned o� line. It cannot be interrupted.
The kick is made slow when the opponent goal is far away from the robot, this is to avoid to kick
the ball out of the �eld. When one opponent pole or the opponent goal is enough close the kick
is made fast.

If the robot does not detect any opponent pole but detects an own pole the robot adopts a
defending strategy. It goes to the ball and once close enough it starts to turn around the ball to
place itself between the own pole and the ball. No kick is triggered after positioning, the robot
looks for the opponent goal by scanning the environment with its head.

The goalkeeper behavior is an adaptation of the defending player. When the ball approaches the
own goal too much the goalkeeper goes to the ball and places itself between the ball and its goal.
It was decided not to trigger any kick to avoid kicking the ball out of the �eld. Maybe it was a
bad choice. However this strategy proved useful as it had prevented our team from having too
many goals scored into our own goal.

8 Collective behaviors

The collective behavior used in the ball passing challenge is de�ned by the following procedure.
At each time step, each player de�nes its actions and its next state according to its current state
value. Initially, all players are in INIT state.

Such a procedure is tedious in more complex collective situations. Even for this simple one, it
is hard to tune. To use them during the match, collective behaviors must demonstrate positive
rewards against individual behaviors. In the ball passing challenge, it is a duty to use such
collective behavior. Thus, we restricted collective behaviors to the ball passing challenge.

21

collectiveBallPassingChallenge ()
if state is INIT

state = closestFromTheBall (delta, self)
else if state is KICKER

gotoball and kick the ball towards other
if a kick just ended :

send KICK to other
state = ASSISTANT

else if state is ASSISTANT
if state (other) differs to KICKER

state = INIT
else if KICK message just received

wait for 3 sec
state = KICKER

In the collectiveBallPassingChallenge procedure, all possible situations are summed up in
three cases : INIT, KICKER and ASSISTANT. In INIT state, each one has to de�ne who is the
closest to the ball depending on more or less delta distance value, where draws are solved by
self id value (i.e. the smallest self id become the closest NAO to the ball). The function
closestFromTheBall compares all distances from the ball and returns KICKER for the closer and
ASSISTANT for the other. This procedure can be easily extended to more than two players by
modifying the condition state (other) by the condition state of one other. To simplify
implementation, we used a wait for 3 sec function. This last one can be replaced with a wait
for a ball stop. This �rst solution of collective behavior shows that further developments have to
be done in the area.

9 Future improvements

9.1 Solving shortcomings

The �rst developments will aim to solve shortcomings of the current software implementation.
This means:

• better detection of ball when it is partly obstructed, especially when the ball is at the feet.

• more reliable detection of poles to avoid false positives. False positives of blue poles inside
blue sweatbands must be avoided.

• quicker procedure for searching for the ball involving speci�c and adapted head movement
and walking displacements for �eld exploration.

• better placement around the ball when it comes to turn about it by angle close to 180 [deg].

22

9.2 More important developments

The main next developments will focus on setting up a distributed architecture for the robots to
exchange roles dynamically. Developments will also deal with improving vision algorithms, and
localization algorithms using line detection.

• intercommunication between robots, with dynamic role exchange. This involves the imple-
mentation of a distributed network architecture

• enhance scene interpretation with colour group detection

• localization based on line detection, application to goalkeeper positioning with respect to goal
area limits

• better collision avoidance

• increase walking speed

• improve locomotion stability by keeping balance in case of collision or walking across irregular
terrain

• improve kicking motion stability by keeping balance or interrupting it.

References

[1] RoboCup 2009 SPL French L3M team report.

[2] Nicolas Jouandeau, Patrick Bonnin, Vincent Hugel and Pierre Blazevic. �From color groups to
scene interpretation�. 4th Workshop of Humanoid Soccer Robots, 2010

[3] B-Human Team Report and Code Release 2010 (and private conversations).

[4] NAO-Team Humboldt 2009 (and private conversations).

[5] Robocup 2009 TeamChaos Documentation (and private conversations).

23

