
From Color Groups to Scene Interpretation
N. Jouandeau#1, P. Bonnin#2, V. Hugel#3, P. Blazevic #4

#1LIASD, Paris8 University
2 rue de la libert́e, 93526, Saint-Denis Cedex, FRANCE

#2−4LISV, Versailles University
10-12 Av de l’Europe, 78140, Velizy, FRANCE

#1n@ai.univ-paris8.fr
#2−4(bonnin, hugel, blazevic)@lisv.uvsq.fr

Abstract— In this paper we detail an algorithm that deals
with objects and shape recognition based on color groups
identification. The algorithm can dynamically adjust the unit
set of pixels used to define color groups. Each color group is
selected from the current scene. The algorithm is optimizedto run
faster than classical ones. Experiments were conducted on soccer
images captured from real situations of the standard platform
league (SPL). They also show the influence of camera parameters
like contrast and gain. They lead to the conclusion that a setof
rules could help to aggregate color groups and to identify scenes
according to a classical predefined color look-up table (CLUT).

I. I NTRODUCTION

Region image segmentation is a very important topic in
computer vision. A wide range of computational vision ap-
plications and vision problems could in principle make good
use of segmented images, were such segmentations reliably
and efficiently computable. A similar algorithm has already
been applied with success [1]. We address the robustness of
the algorithm over subsampling and its interpretation intothe
scene.

Section 2 describes related work. Section 3 explains the
algorithm, its subsampling policy and its results. Section4
presents the scene interpretation.

II. RELATED WORKS

Region image segmentation is needed for many applica-
tions, either using classical RGB images (for example object
detection for humanoid robot context [2]), or using particular
images, for example infrared thermography for nondestructive
testing [3] or range image for mobile robot navigation [4].

In addition, intermediate-level vision problems such as
stereo and motion estimation require an appropriate region
of support for matching operations. Higher-level problems
such as recognition and image indexing can also make use
of segmentation results for matching.

Region segmentation was studied in the 70s (Pavlidis
split and merge well known algorithm [5], and survey of
Zucker [6]). But, the problem seems not to be solved yet
considering work in these recent years. They are a few new
proposed methods, but many well-known methods have been
improved: watershed (introduced by S.Beucher [7], improved
in [8], [9], graph based [10], seed algorithms [11], optimization
of a multiple criteria function [12], and Voronoi based [13].

Another way to improve well-known methods is to study
complementary algorithms, and to combine them in an hybrid
method, which produces better results, according to the criteria
of evaluation. Milgrams and Ohlender algorithms are com-
bined in [14]. Closer to our work, because dedicated to robotic
applications, [15], [16] present an evaluation of two popular
segmentation algorithms, the mean shift-based segmentation
algorithm and a graph-based segmentation scheme. Then, they
also consider a hybrid method which combines the other two
methods. Three characteristics are taken into account :

• Correctness: the ability to produce segmentations that
match human intuition, that is, segmentations that cor-
rectly identify structures in the image at neither too fine
nor too coarse level of detail.

• Stability with respect to parameter choice: the ability
to produce segmentations of consistent correctness for a
range of parameter choices.

• Stability with respect to image choice: the ability to
produce segmentations of consistent correctness using
the same parameter choice on a wide range of different
images.

In [1], we proposed a hybrid method that combines 3x3
pyramidal adaptations of Horowicz and Pavlidis algorithm [5],
with A. Rosenfeld, JL Pfalz blob detection. As detailed in [1],
the criteria of our Clear Box Evaluation is the speed up factor,
considering a minimun quality of the segmentation results that
allows the robot to achieve its task: even though all pixels are
not correctly labeled, attributes of regions such as surface, and
gravity center must be correct.

Our motivation is to find a segmentation method that is
robust to changes of lighting conditions as well for the
RoboCup challenges in the standard league (Nao Humand
robot), as for other applications in outdoor scenes. First,
we defined a procedure of camera parameters tunning that
minimizes lighting conditions’ sensitivity. Second, we expect
that the combination of pyramidal gathering, blob detection
and our region interpretation makes the best of each parts.
In contrast to previous works [17], the neighborhood is not
computed only on a region level.

In our last participations at robocup (from Paris in 1998
to Osaka in 2005, in Legged League with AIBO robot), in



order to meet real time constraints, a pixel color classification
followed by a blob detection were implemented. But, the pixel
color classification requires many parameters such as threshold
values that depend very much on lighting conditions. The
region color classification requires the same parameters, but
it is less dependent on these conditions.

III. STATIC REGION SEGMENTATION ALGORITHM

Our algorithm realizes the region segmentation in two steps:
the first one definesR1, R2 andR3, sets of 3x3, 9x9 and 27x27
regions (lines 6 to 11). The second one definesR’, the set of
regions with same color attributes (lines 13 to 29).

The threshold mentioned in line 9 of the algorithm defines
a minimal number of regions with the same color space
attributes. Each region has 8 surrounding regions, that can
be selected if its distance to the central region is below a
fixed value (in YUV color space, we use(dy + 1.2 × du +
1.2 × dv)/3.4 < value). If more than 5 surrounding regions
are selected, then the central region and selected surrounding
regions are regrouped.

void regionSegmentation (image)
1 R = {R0, R1, R2, R3}
2 R0 = R1 = R2 = R3 = {}
3 S = {3x3, 9x9, 27x27}
4 for each pixel p in image
5 add p in R0
6 for i = 0 ; i < 3; i++
7 for each e in R[i]
8 compute S[i] region centered at e
9 if under threshold

10 add e to R[i+1]
11 remove e from R[i]
12 R’ = {}
13 for i = 3 ; i > 0; i--
14 for each e in R[i]
15 blob_regroup = false
16 for each r’ in R’
17 regroup e with connected r’
18 if regrouped
19 remove e from R[i]
20 add e to r’
21 blob_regroup = true
22 if blob_regroup == false
23 add e to new_region
24 regroup e with connected R[i] elt
25 if regrouped
26 for each connected R[i] elt c
27 remove c from R[i]
28 add c to new_region
29 add new_region to R’

In the second part (lines 13 to 29), bigger regions are
selected first and regrouped inR’. If a region is not regrouped
with any others, then it makes a new region (line 29).

Table I compares the number of regions for 6 classical
robocup views, where the first two are simple scenes, the next

two are less simple and the last two are most complicated.
Fig. 1 shows a part of the central circle and the penalty
point. Fig. 2 shows the same scene type but with blur. Such
a case can occur if motion is not well synchronized with the
video grabbing process. Fig. 3 shows a simple static view,
including the ball and a part of the goal. Fig. 4 shows the field
partially occulted by another moving Nao. In this case, the blur
due to other robots moving cannot be avoided with motion
synchronization. Fig. 5 shows a Nao with the ball. Fig. 6
shows a scene with public watching the game. The 3x3 column
shows that the number of initial 3x3 regions are closely the
same except for complicated scenes, involving details smaller
than a 3x3 region like in Fig. 6. Starting from this, the number
of regions decreases in the next two columns, which means
that some of these regions become 9x9 and 27x27 regions. For
Fig. 6, results are similar for 9x9 and 27x27 regions. Although
only 151 regions are regrouped (which means 4% of the 9x9
regions), the last 27x27 region synthesis is really important for
scene interpretation. The next three columns show the blob-
regroup steps. The scene complexity is expressed with the final
number of regions showed in the r3x3 column. The number
of regions for blurred images is slightly greater than for non-
blurred images.

TABLE I

RESULTS WITH CLASSICAL ALGORITHM

3x3 9x9 27x27 r27x27 r9x9 r3x3
Fig. 1 8360 1756 1210 1127 875 55
Fig. 2 8401 1760 1168 1093 896 253
Fig. 3 7939 2865 2541 2494 2140 352
Fig. 4 8066 2674 2259 2198 1933 526
Fig. 5 7498 2841 2518 2469 2181 663
Fig. 6 6643 3657 3506 3487 3270 1427

TABLE II

RESULTS WITH SUBSAMPLING POLICY

3x3 9x9 27x27 r27x27 r9x9 r3x3
Fig. 1 2094 477 356 340 264 7
Fig. 2 2090 485 343 326 278 67
Fig. 3 1972 835 783 778 676 101
Fig. 4 1995 801 727 719 635 192
Fig. 5 1836 797 743 739 660 206
Fig. 6 1597 931 892 888 848 366

To adapt our algorithm to the Nao’s processing capacity, we
applied a simple subsampling policy. Therefore we modified
the 4th line of the algorithm by taking one out of two pixels,
and one out of two lines.



Fig. 1. Classical view facing the line

Fig. 2. Classical view facing the line

Fig. 3. Classical view facing goal and ball

Fig. 4. Classical view facing moving Nao

Fig. 5. Classical view facing Nao with the ball

Fig. 6. Classical view facing soccer field and public



Fig. 7. Previous Fig. 1 view with Alg. 1 Fig. 8. Previous Fig. 1 view with Alg. 1 and
a subsampling policy

Fig. 9. Previous Fig. 1 view through Canny

Fig. 10. Previous Fig. 2 view with Alg. 1 Fig. 11. Previous Fig. 2 view with Alg. 1 and
a subsampling policy

Fig. 12. Previous Fig. 2 view through Canny

Fig. 13. Previous Fig. 3 view with Alg. 1

Fig. 14.

Fig. 15. Previous Fig. 3 view with Alg. 1 and
a subsampling policy

Fig. 16. Previous Fig. 3 view through Canny



Fig. 17. Previous Fig. 4 view with Alg. 1
Fig. 18. Previous Fig. 4 view with Alg. 1 and
a subsampling policy

Fig. 19. Previous Fig. 4 view through Canny

Fig. 20. Previous Fig. 5 view with Alg. 1 Fig. 21. Previous Fig. 5 view with Alg. 1 and
a subsampling policy

Fig. 22. Previous Fig. 5 view through Canny

Fig. 23. Previous Fig. 6 view with Alg. 1 Fig. 24. Previous Fig. 6 view with Alg. 1 and
a subsampling policy

Fig. 25. Previous Fig. 6 view through Canny



Table II shows the results with such policy with 320x240
intial image size (subsampling policy used with Alg. 1 equals
to standard sampling for a 160x120 image). 3x3 regions are
4 times smaller than in Table I, proportionally to its initial
number of pixels. Over regrouping regions, this ratio varies
from 3 times and greater. Blurred images remain slightly
complicated. Ratios between each step are closely the same.
After region segmentation, some pixels are out of any region.
These pixels are located in edges and in regions smaller than
3x3. Figures 7 to 25 show such results and compare them to
Canny edge detector openCV implementation [18]. Table III
gives the times (in10−3sec. computed with Nao cpu-unit)
for both region segmentation policies. Our algorithm with
subsampling is faster than Canny for complex scenes. Canny
produces less edge points but fails to grab blurred parts (see
Fig. 12 and 19).

As openCV Canny implementation expects a grayscale input
image, each YUV input image has to be converted in gray-
level. As Alg. 1 deals simultaneously with 3 planes (YUV),
a similar edge detection based on such Canny edge detector
would take at least 3 times more than this one.

TABLE III

COMPARISON WITH CANNY EDGE DETECTOR

Alg. 1 Alg. 1 with subsampling Canny
Fig. 1 Fig. 7 19.90 Fig. 8 12.84 Fig. 9 19.82
Fig. 2 Fig. 10 23.66 Fig. 11 12.23 Fig. 12 19.42
Fig. 3 Fig. 14 48.56 Fig. 15 25.20 Fig. 16 19.23
Fig. 4 Fig. 17 36.88 Fig. 18 20.11 Fig. 19 16.22
Fig. 5 Fig. 20 37.25 Fig. 21 17.88 Fig. 22 22.95
Fig. 6 Fig. 23 29.70 Fig. 24 11.84 Fig. 25 25.73

IV. SEGMENTED REGIONS INTERPRETATION

In order to interpret all areas defined by region segmen-
tation, we use a Color Lookup Table to simplify the input
regions into regions of interest as follows:

void regionInterpretation(R’)
1 for each r in R’
2 r.supposed_id = null
3 for each pixel p of r
4 for each Lookup entry e
5 if p has valid e
6 r.e identity ++
7 r.supposed_id = max(r.e identities)
8 if r.supposed_id == null
9 remove r from R’

10 if r.supposed_id > threshold
11 r.true_id = r.suppose_id
12 add r to R’’
13 remove r from R’
14 for each r1 in R’’
15 for each r2 of R’ surrounding r1
16 if r2.supposed_id == r1.true_id
17 and r2.supposed_id > threshold
18 r2.true_id = r1.true_id

This process is divided in a two step process. The first
defines truly assumed regions interpretation (lines 1 to 13).
The second defines the interpretation of adjacent regions
(lines 14 to 18).R’ regions are converted toR’’ regions,
that are clearly associated to Color Lookup Entries. In our
CLUT, one pixel can be associated with multiple object
identity. Therefore, the identification is validated if a real
maximal identity can be found with respect to others (line
11). During this first process, each identity is associated with
an accumulation. Regions without identity are removed from
R’. For the second process, this accumulation must reach a
minimal threshold to allow identity propagation (line 17).At
the end, we regroup regions with same true identity and others
(without true identity) are discarded. Therefore, lonely pixels
are discarded due to their region identity and lonely regions
are discarded if they are not truly identified.

Table IV gives averages and standard deviations for number
of regions over a classical half-time. The classical region
segmentation produces more regions than the subsampled seg-
mentation. The interpretation of classical sampling produces
less regions than the interpretation of subsampled segmenta-
tion.

TABLE IV

INTERPRETATION SEGMENTATION RESULTS

classical sampling subsampling
step average std deviation average std deviation
3x3 7929 288 1982 75
9x9 2153 562 657 154

27x27 1684 667 559 179
r27x27 1624 680 548 182

r9x9 1395 660 484 184
r3x3 348 259 117 88

r” 6 4 12 6

Fig. 26 shows region segmentation of Fig. 3. Fig. 27 shows
ball region segmentation. Fig. 28 shows region interpretation
of Fig. 26. With subsampling policy, these figures are respec-
tively Fig. 29, 30 and 31. It shows that the number of regions
can grow up for smaller objects (like the ball). Finally, edges
between these regions are lost. We think that it would be
interesting to recover them during the region interpretation
process.

V. CONCLUSION

We have presented two algorithms that deal with region
segmentation and interpretation. We have addressed their ro-
bustness over subsampling to decrease time processing. The
speedup over the subsampling policy is approximately twice.
The interpretation process automatically selects regionsby
proximity of truly identify regions and permits to aggregate
color groups to identify scenes according to a classical prede-
fined color look-up table.

REFERENCES

[1] A. D. Cabrol, P. Bonnin, T. Costis, V. Hugel, and P. Blazevic, “A new
video rate region color segmentation and classification forsony legged
robocup application,” inLecture Notes in Computer Science, RoboCup
2005: Robot Soccer World Cup IX., Springer-Verlag, 2005.



Fig. 26. Region segmentation of
previous Fig. 3

Fig. 27. Focus on the ball of
previous Fig. 26

Fig. 28. Region interpretation of previous Fig. 26

Fig. 29. Region segmentation of pre-
vious Fig. 3 with subsampling policy

Fig. 30. Focus on the ball of
previous Fig. 29

Fig. 31. Region interpretation of previous Fig. 29

[2] A. Arsenio, “Object recognition from multiple percepts,” in IEEE-
RAS/RSJ International Conference on Humanoid Robots, 2004.

[3] B. Rani, N. Nandhitha, and N. Manoharan, “Euclidean distance based
color image segmentation algorithm for dimensional characterization of
lack of penetration from weld thermographs for on-line weldmonitor-
ing in gtaw,” in 17th World Conference on Nondestructive Testing, ,
Shanghai, China, 25-28 Oct 2008.

[4] S. Gächter, “Results on range image segmentation for service robots,”
in Laboratoire de Systèmes Autonomes (LSA), Ecole Polytechnique
Fédérale de Lausanne (EPFL), EFPL-LSA-2005-01, 2005.

[5] S. Horowitz and T. Pavlidis, “Picture segmentation by a directed split
and merge procedure,” inComputer Methods in Images Analysis, 1977,
pp. 101–11.

[6] S. Zucker, “Region growing: Childhood and adolescence,” CGIP, vol. 5,
no. 3, pp. 382–399, September 1976.

[7] S. Beucher, “Segmentation dimages et morphologie math´ematique (in
french),” Ph.D. dissertation, ENSMP - CMM Centre de Morphologie
Mathématique, ENSMP., 1990.

[8] S. Lefevre, “Segmentation par ligne de partage des eaux avec marqueurs
spatiaux et spectraux,” inColloque GRETSI sur le Traitement du Signal
et des Images, september 2009.

[9] M. Khiyal, A. Khan, and A. Bibi, “Modified watershed algorithm
for segmentation of 2d images,” inIssues in Informing Science and
Information Technology, Volume 6 2009.

[10] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image
segmentation,”Int. J. Comput. Vision, vol. 59, no. 2, pp. 167–181, 2004.

[11] B. Mičušı́k and A. Hanbury, “Automatic image segmentation by posi-
tioning a seed,” inComputer Vision ECCV 2006, 2006, pp. 468–480.

[12] B. Mičušı́k and T. Pajdla, “Multi-label image segmentation via max-sum
solver,” in Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, 2007, pp. 1–6.

[13] P. Andres Arbelaez and L. Cohen, “Segmentation d’images couleur par
partitions de voronoı̈,” inGRETSI, Saint Martin d’H/‘eres, France, 2004.

[14] C. Thomas, B. Hoeltzener, and B. Zavidovique, “When milgram met
ohlander,” in Congrès COGNITIVA 90, Novembre 1990, Madrid, pp
791-796.

[15] C. Pantofaru and M. Hebert, “A comparison of image segmentation
algorithms,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-
TR-05-40, September 2005.

[16] R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward objective
evaluation of image segmentation algorithms,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 929–944,
June 2007.

[17] T. Röfer, “Region-based segmentation with ambiguouscolor classes
and 2-d motion compensation,” inRoboCup 2007: Robot Soccer World
Cup XI, No. 5001, pp. 369376, Lecture Notes in Artificial Intelligence.
Springer.

[18] G. Bradski, “The OpenCV Library,”Dr. Dobb’s Journal of Software
Tools, 2000.


