A Parallel Monte-Carlo Tree Search Algorithm

Tristan Cazenave and Nicolas Jouandeau

LIASD, Université Paris 8, 93526, Saint-Denis, France
cazenave@i . uni v-paris8.fr
n@i . univ-paris8.fr

Abstract. Monte-Carlo tree search is a powerful paradigm for the gah@o
We present a parallel Master-Slave algorithm for Montel€Ctaee search. We
experimented the algorithm on a network of computers usargus configura-
tions: from 12,500 to 100,000 playouts, from 1 to 64 slaves, fiom 1 to 16
computers. On our architecture we obtain a speedup of 146&a@ldves. With
a single slave and five seconds per move our algorithm scd@r&8edagainst
GNUGO, with sixteen slaves and five seconds per move it scores 7M&EXalso
give the potential speedups of our algorithm for variouygld times.

1 Introduction

Works on parallelization in games are mostly about the fizdtion of the Alpha-Beta
algorithm [2]. We address the parallelization of the UCToaithm (Upper Confidence
bounds applied to Trees). This work is an improvement ovepogvious work on the
parallelization of UCT [3]. In our previous work we testedeh different algorithms.
The single-run algorithm uses very few communicationgiitsists in having each slave
computing its own UCT tree independently of the others. Wienthinking time is
elapsed, it combines the results of the different slavebomse its move. The multiple-
runs algorithm periodically updates the trees with the ltssaf the other slaves. The
at-the-leaves algorithm computes multiple playouts irappalrat each leaf of the UCT
tree. In this paper we propose a different parallel algorithat develops the UCT tree
in the master part and performs the playouts in the slavearallpl, it is close to the
algorithm we presented orally at the Computer Games Work8867 and that we used
at the 2007 Computer Olympiad.

Monte-Carlo Go has recently improved to compete with the Besprograms [4,
6, 7]. We show that it can be further improved using paral&lon.

Section 2 describes related work. Section 3 presents tladigdalgorithm. Section
4 details experimental results. Section 5 concludes.

2 Redated Works

In this section we expose related works on Monte-Carlo Go.fivge explain basic
Monte-Carlo Go as implemented indBBLE in 1993. Then we address the combination
of search and Monte-Carlo Go, followed by the UCT algorithm.

2.1 Monte-Carlo Go

The first Monte-Carlo Go program is@BBLE [1]. It uses simulated annealing on a list
of moves. The list is sorted by the mean score of the gamesathermove has been
played. Moves in the list are switched with their neighbathva probability dependent
on the temperature. The moves are tried in the games in tlee ofthe list. At the end,
the temperature is set to zero for a small number of gamesr Aft games have been
played, the value of a move is the average score of the gamas fieen played in first.
GosBLE-like programs have a good global sense but lack of tacticaeiwedge. For
example, they often play useless Ataris, or try to save cagtstrings.

2.2 Search and Monte-Carlo Go

A very effective way to combine search with Monte-Carlo Ge baen found by Rémi

Coulom with his program €AzY STONE [4]. It consists in adding a leaf to the tree
for each simulation. The choice of the move to develop in tee tdepends on the
comparison of the results of the previous simulations thextvthrough this node, and
of the results of the simulations that went through its aifplhodes.

23 UCT

The UCT algorithm has been devised recently [8], and it has lagplied with success
to Monte-Carlo Go in the program ™0 [6, 7] among others.

When choosing a move to explore, there is a balance betwex@oitaion (explor-
ing the best move so far), and exploration (exploring otheves to see if they can prove
better). The UCT algorithm addresses the explorationfgtgiion problem. UCT con-

sists in exploring the move that maximizes+ C' x 1/%. The mean result
of the games that start with tkemove isu;, the number of games played in the current
node isgames, and the number of games that start with meyis child; — games.

TheC constant can be used to adjust the level of exploration dcdilderithm. High
values favor exploration and low values favor exploitation

3 Paralldization

In this section, we present the run-time environment useddoute processes on a clus-
ter. Then we present and comment the master part of the @atgorithm. Eventually,
we present the slave part of the parallel algorithm.

3.1 TheParallel Run-Time Environment

To improve search, we choose message passing as paratiehpnming model, which
is implemented in the standard MPI, also supported by Opeh[B]POpen MPI is
designed to achieve high performance computing on hetesages clusters. Our clus-
ter is constituted with classical personal computers antl wiSMP head node that
has four processors. The resulting cluster is a private artwonnected with TCP

Gigabit network. Both communications are done only with ghebal communica-
tor MPI.COMM_WORLD. Each hyper-threaded computer that allows to workvem t
threads at once, supports of one to four nodes of our pacalteputer. Each node runs
one task with independent data. Tasks are created at thartegdf the program’s exe-
cution, via the use of the master-slave model. The SMP hede is@lways the master.
All Go Text Protocol read and write commands are realizedhfend to the master.
Slaves satisfy computing requests.

3.2 TheMaster Process

The master process is responsible for descending and opdiagi UCT tree. The slaves
do the playouts that start with a sequence of moves sent bmaiseer.

1 Master()

2 MasterLoogboard| |, color, ko, time);

3 for(s < 0;s < nbSlaves; s++)

4 | sends, END_LOOP);

5 return bestUCTMové);

6 MasterLoopboard| |, color, ko, time)

7 for(s < 0;s < nbSlaves; s++)

3 sends, board]], color, ko);

4 seq[s][] < descendUCTTreg);

5 sends, seqls][]);

6 while(moreTimétime))

7 s «receive);

8 result[s] <receive);

9 updateUCTTregseq[s][], result[s]);

10 seq[s][] < descendUCTTreg);

11 sends, seqls][]);

12 for(i < 0;¢ < nbSlaves; i++)

13 s «receive);

14 result[s] «receive);

15 updateUCTTregseq[s][], result[s]);
ALG. 1: Master Algorithm.

The master starts sending the position to each slave. Thlewélops the UCT tree
once for each slave and sends them an initial sequence ofsm®hen it starts its
main loop (called MasterLoop) which repeatedly receivefia slave the result of the
playout starting with the sent sequence, update the UCTwitbethis result, create a
new sequence descending the updated UCT tree, and sendgwhi&equence to the
slave.

The master finishes the main loop when no more time is availabwhen the
maximum number of playouts is reached. Before stoppinggceives the results from
all the children that are still playing playouts until no raslave is active.

The master part of the parallel algorithm is given in aldonitl.

3.3 The Slave Process

The slave process loops until the master stops it with an EM{ME message, other-
wise it receives the board, the color to play and the ko ietgtirsn and starts another
loop in order to do playouts with this board configuration.

In this inner loop, it starts receiving a sequence of moves) tt plays this sequence
of moves on the board, then completes a playout and sendsdbk of the playout to
the master process.

The slave part of the parallel algorithm is given in algaritB.

1 SlavelLoop)

2 id —slaveld)

3 while(true)

4 | if (receivéboard|], color, ko) == END_GAME)
5 break;

6 state — CONTINUE;

7 while(state == CONTINUE)

8 state «— SlavePlayou;

9 return;

10 SlavePlayoy)
11 if(receivé sequence[]) == END_LOOP)

12 | returnEND_LOOP;

13 for(i < 0;¢ < sequence.sizg); i++)
14 | playMove(sequenceli]);

15 result «+— playRandomGanig;

16 sendid);

17 sendresult);
18 returnCONTINUE,

ALG. 2: Slave Algorithm.

4 Experimental Results

Tests are run on a simple network of computers running LINUKIB. The network
includes 1 Gigabit switches, 16 computers with 1.86 GHzl ldwal core CPUs with 2
GB of RAM. The master process is run on the server which is @ GBz Intel Xeon
with 4 GB of RAM.

In our experiments, UCT uses + 0.3 x |/ —2299mes) _ 14 explore moves.

child;—games

The random games are played using the same patterns asGol[6] near the last
move. If no pattern is matched near the last move, the sefeofimoves is the same as
in CRAZY STONE [4].

Table 1 gives the results (% of wins) of 2069 games (100 with black and 100
with white, with komi 7.5) against 8uGo 3.6 default level. The time limit is set to five
seconds per move. The first program uses one slave, it scdrfe8#against QUGO.
The second program uses sixteen slaves, it scores 70.5 #sa@aiuGO.

Table 1. Results against Guco for 5 seconds per move.

1slave 40.509
16 slaves 70.50%

Table 2 gives the results (% of wins) of 20&9 games (100 with black and 100
with white, with komi 7.5) for different numbers of slavesdadifferent numbers of
playouts of the parallel program againstiGzo 3.6 default level.

Table 2. Results of the program againsthNGGo 3.6.

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64| slaves

100,000 playouts 70.0% 69.0% 73.5% 70.0% 71.5% 65.0% 58.0%
50,000 playouts 63.5% 64.0% 65.0% 67.5% 65.5% 56.5% 51.5%
25,000 playouts 47.0% 49.5% 54.0% 56.0% 53.5% 48.5% 42.0%
12,500 playouts 47.5% 44.5% 44.0% 455% 45.0% 36.0% 32.0%

Table 2 can be used to evaluate the benefits from parallglthim UCT algorithm.
For example, in order to see if parallelizing on 8 slaves isarioteresting than par-
allelizing with 4 slaves, we can compare the results of 100 flayouts with 8 slaves
(70.0%) to the results of 50,000 playouts with 4 slaves @).0n this case, paral-
lelization is beneficial since it gains 5.0% of wins againstu@o 3.6. We compare 8
slaves with 100,000 playouts with 4 slaves with 50,000 plegsince they have close
execution times (see table 3).

To determine the gain we have parallelizing with 8 slaves oe¢ parallelizing at
all, we can compare the results of 12,500 playouts with le{dv.5%) to the results of
100,000 playouts with 8 slaves (70.0%). In this case it iy beneficial.

Another interesting conclusion we can draw from the tabtkasthe interest of par-
allelizing starts to decrease at 32 slaves. For examplé@0(@layouts with 32 slaves
wins 65.0% when 50,000 playouts with 16 slaves wins 65.5%gdhog from 16 slaves
to 32 slaves does not help much.

Therefore, our algorithm is very beneficial until 16 slavas, it is much less bene-
ficial to go from 16 slaves to 32 or 64 slaves.

Table 3. Time in sec. of the first move.

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64

1 dave per computer
100,000 playouts 65.02 32.96 16.78 8.23 4.49 —

50,000 playouts 32.45 17.05 856 4.08 2.19

2 daves per computer

slaves

50,000 playouts — — 10.33

100,000 playouts — 35.29 17.83 9.17 4.61 3.77 -
50,000 playouts — 16.45 9.23 4.61 2.25 1.74
4 dlaves per computer
100,000 playouts — — 20.48 13.13 5.47 3.77 3.61
6.13 2.82 1.83 1.75

Table 3 gives the mean over 11 runs of the time taken to plafirtdtenove of a 9x9
game, for different numbers of total slaves, different nemstof slaves per computer,
and different numbers of playouts. The values were compartesh homogeneous net-

work of dual cores. The associated variances are very low.

We define the speedup for n slaves as the division of the timpl&ying the first

move with one slave by the time for playing the first move witlaves.

Table 4 gives the speedup for the different configuratiorts H90,000 playouts,
calculated using table 3. Table 5 gives the correspondiegdymps for 50,000 playouts.
The speedups are almost linear until 8 slaves with one slawvegmputer. They start
to decrease for 16 slaves (the speedup is then roughly 1d stahilize near to 18 for

more than 16 slaves.

Table 4. Time-ratio of the first move for 100,000 playouts.

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64

slaves

8.01

1slave per computer 1.00 197 387 7.90 14.48 — -+
2 slaves per computer — 184 365 7.09 14.10 17.25
4 slaves per computer — — 3.17 495 11.89 17.25

Table 5. Time-ratio of the first move for 50,000 playouts.

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64|slaves

1 slave per computer 1.00 190 3.79 7.95 14.82 —

2 slaves per computer — 197 352
4 slaves per computer — — 3.14 529 1151 17.73

7.04 1442 18.65

8.54

Another conclusion we can draw from these tables is thatésdwt make a large
difference running one slave per computer, two slaves pepcter or four slaves per
computer (even if processors are only dual cores).

In order to test if the decrease in speedup comes from thet digfrom the server,
we made multiple tests. The first one consists in not playlagquts in the slaves,
and sending a random value instead of the result of the ptajtoreduces the time
processing of each slave to almost zero, and only measugesothmunication time
between the master and the slaves, as well as the mastesgiracéme.

The results are given in table 6. We see that the time for nam@sults convergesto
3.9 seconds when running on 32 slaves, which is close tortteetiiken for the slaves
playing real playouts with 32 or more slaves. Therefore ti®es@conds limit is due to
the communications and to the master processing time ant tiné time taken by the
playouts.

Table 6. Time in sec. of the first move with random slaves.

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves

1 dave per computer
100,000 playouts 25.00 1250 6.25 4.44 410 —+
2 dlaves per computer

100,000 playouts — 1249 6.94 447 4.48 3193
4 daves per computer
100,000 playouts — — 6.26 4.72 4.07 3.93

In order to test the master processing time, we removed theremication. We
removed the send command in the master, and replaced thgiceceommand with
a random value. In this experiment the master is similar éopfrevious experiment,
except that it does not perform any communication. Resuéggaven in table 7. For
100,000 playouts the master processing time is 2.60 secibadsounts for 78% of the
3.3 seconds limit we have observed in the previous expetimen

Further speedups can be obtained by optimizing the mastergoa from running
the algorithm on a shared memory architecture to reducdfisigmtly the communica-
tion time.

Table 7. Time in sec. of the random master.

100,000 playouts 2.6(
50,000 playouts 1.3(

Table 8 gives the time of the parallel algorithm for variousnbers of slaves, with
random slaves and various fixed playout times. In this erpant, a slave sends back a

random evaluation when the fixed playout time is elapsed fif$tecolumn of the table
gives the fixed playout time in milliseconds. The next colgngives the mean time
for the first move of a 9x9 game, the numbers under parentjasisthe associated
variance, each number corresponds to ten measures.

We see in table 8 that for slow playout times (greater thanmiliseconds) the
speedup is linear even with 32 slaves. For faster playowdithe speedup degrades as
the playouts get faster. For one millisecond and half a seilond, it is linear until 16
slaves. The speedup is linear until 8 slaves for playout #islew as 0.125 milliseconds.
For faster playout times it is linear until 4 slaves.

Slow playouts policies can be interesting in other domdmas tGo, for example
in General Game Playing. Concerning Go, we made experimgtiisa fast playout
policy, and we succeeded parallelizing it playing multiplayouts at each leaf. For
19x19 Go, playouts are slower than for 9x9 Go, therefore tgordhm should better
apply to 19x19 Go.

Table 8. Time in msec. of the algorithm with random slaves and varfdagout times.

time 1 slave 4 slaves 8 slaves 16 slaves 32 slaves
10 1026.86.606) 256.20103 128.10.016) 64.0 (0.030) 32.0 (0.020)
2 224 .90.027) 56.3 0.162) 28.1 0.011) 14.0 (0.005) 7.0 (0.002)
1 125.0008y 31.2(0.006) 15.6 0.001) 7.8 (0.006) 4.3 (0.035)
0.5 75.0(0.026) 18.8 (0.087) 9.4 (0.001) 4.8 (0.034) 4.0 (0.055)
0.25 50.0(0.005) 12.5 0024 6.2 (0.001) 4.1 (o019 3.9 (0.049)
0.125 37.50.021) 9.4 (0.001) 4.7 (0.007) 4.1 (0222 3.9 (0.055)
0.0625 25.Qo.o12) 6.6 (0.013) 4.4 0013 4.0 (0023 3.8 (0.016)
0.03125 25.Qv.o007) 6.3 (0.004) 4.5 (0.110) 4.2 (0.0025) 4.0 (0.054)
0.01 25.00.007) 6.3 (0.004) 4.5 (0.110) 4.5 (0.025 4.0 (0.054)

The last experiment tests the benefits of going from 8 slavés$ tslaves assuming
linear speedups. Results are given in table 9. There is @@sein winning percentages
as we increase the number of playouts.

Table 9. Results of the 8-slaves program against 16-slaves program.

8-slaves with 50,000 playouts against 16-slaves with Tipayouts 33.50%
8-slaves with 25,000 playouts against 16-slaves with SD8@youts 27.00%
8-slaves with 12,500 playouts against 16-slaves with Zbf@youts 21.50%

5 Conclusion

We have presented a parallel Monte-Carlo tree search #igorExperimental results
against GiuGco 3.6 show that the improvement in level is efficient until 16vsis.
Using 16 slaves, our algorithm is 14 times faster than theestipl algorithm. On a
cluster of computers the speedup varies from 4 to at leasef2rdling on the playout
speed. Using 5 seconds per move the parallel program impfova 40.5% with one
slave to 70.5% with 16 slaves against&so 3.6.

References

1. B. Bruegmann. Monte Carlo Go. Technical Report, httpgéeer.ist.psu.edu/637134.html,
1993.

2. Murray Campbell, A. Joseph Hoane Jr., and Feng hsiung Bisep blue Artif. Intell., 134(1-
2):57-83, 2002.

3. T.Cazenave and N. Jouandeau. On the parallelization @f UiGComputer Games Workshop
2007, pages 93-101, Amsterdam, The Netherlands, June 2007.

4. R. Coulom. Efficient selectivity and back-up operatorMionte-Carlo tree search. @Bom-
puters and Games 2006, Volume 4630 of LNCS, pages 72—83, Torino, Italy, 2006. Sgei.

5. Edgar Gabriel, Graham E. Fagg, George Bosilca, Tharakdmgsack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian BaAatirew Lumsdaine, Ralph H.
Castain, David J. Daniel, Richard L. Graham, and Timothy $otléll. Open MPI: Goals,
concept, and design of a next generation MPI implementalioroceedings, 11th European
PVM/MPI Users' Group Meeting, pages 97—-104, Budapest, Hungary, September 2004.

6. S. Gelly, Y. Wang, R. Munos, and O. Teytaud. ModificatiorJ@T with patterns in Monte-
Carlo Go. Technical Report 6062, INRIA, 2006.

7. Sylvain Gelly and David Silver. Combining online and affliknowledge in UCT. InCML,
pages 273-280, 2007.

8. L. Kocsis and C. Szepesvari. Bandit based Monte-Cadorphg. INECML, volume 4212 of
Lecture Notes in Computer Science, pages 282-293. Springer, 2006.

